Base strength of a species is its ability to accept H+ from another species (see, Brønsted-Lowry theory). The greater the ability of a species to accept a H+ from another species, the greater its base strength. Organic chemists customarily compare the strength of bases using the strengths of their conjugate acids, measured as pKa.

eg: Base strengths of F⁻ and HS⁻

\[
\text{conjugate acid of } F^- = F^- + H^+ = HF \\
\text{conjugate acid of } HS^- = HS^- + H^+ = H_2S
\]

<table>
<thead>
<tr>
<th>conjugate acid</th>
<th>pKₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>3.17</td>
</tr>
<tr>
<td>H₂S</td>
<td>7.00</td>
</tr>
</tbody>
</table>

HF is a stronger acid than H₂S. The stronger the acid, the weaker the conjugate base, and vice versa. Thus, HS⁻ is a stronger base than F⁻.

Contributors

- Gamini Gunawardena from the OChemPal site (Utah Valley University)