Temperature Effects on Equilibrium: A Study Guide

Show that

\[\frac{\Delta H}{d \ln K} = - \frac{\Delta G}{R} d(1/T) \]

Solution

Since

\[\Delta G = - R \, T \ln K, \]
\[\ln K = - \frac{\Delta G}{R \, T} \]

Differentiate both sides with respect to \((1/T)\) in the above equation gives,

\[\frac{d(\ln K)}{d(T)} = - \frac{1}{R} \frac{\Delta G}{T} / \frac{d(T)}{d(T)} \]
\[= - \frac{\Delta H}{R \, T^2} \]

DISCUSSION

If \(K_1 \) and \(K_2 \) are the equilibrium constant at \(T_1 \) and \(T_2 \) respectively, show further that

\[\ln \left(\frac{K_1}{K_2} \right) = - \left(\frac{\Delta H}{R} \right) \left(\frac{1}{T_1} - \frac{1}{T_2} \right). \]

This is achieved by definite integral. This relationship indicates that the plot of \(\ln(K) \) versus \(1/(T) \) is a straight line, and the slope is \(- (\Delta H / R) \). Thus, \(\Delta H \) can be determined by measuring the equilibrium constant at different temperatures.

\[101,300 \, \text{N m}^{-2} \]
\[23.756 \, \text{mmHg} \]
\[= \frac{3166 \, \text{Pa}}{760 \, \text{mmHg}} \]

\[G^o = 8.312 \, \text{J} \, \text{K}^{-1} \ln(3166) \]
\[= 20.0 \, \text{kJ/hr} \]

DISCUSSION

This example illustrates the evaluation of Gibb's energy when the equilibrium constant is known.

Contributors and Attributions

- Chung (Peter) Chieh (Professor Emeritus, Chemistry @ University of Waterloo)