Temperature Effects on Equilibrium: A Study Guide

Show that

\[\frac{\text{DH}}{R} \frac{d \ln K}{d(1/T)} = - \frac{d}{dT} \frac{1}{T} \]

Solution

Since

\[\Delta G = -RT \ln K, \]
\[\ln K = - \frac{\Delta G}{RT} \]

Differentiate both sides with respect to \((1/T)\) in the above equation gives,

\[\frac{d}{dT} \frac{\ln K}{(1/T)} = \frac{-1}{R} \frac{d}{dT} \frac{\Delta G}{T} \]
\[= - \frac{\Delta H}{RT^2} \]

DISCUSSION

If \(K_1 \) and \(K_2 \) are the equilibrium constant at \(T_1 \) and \(T_2 \) respectively, show further that

\[\ln \left(\frac{K_1}{K_2} \right) = - \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right). \]

This is achieved by definite integral. This relationship indicates that the plot of \(\ln (K) \) versus \(1/(T) \) is a straight line, and the slope is \(- (\Delta H / R)\). Thus, \(\Delta H \) can be determined by measuring the equilibrium constant at different temperatures.

\[G^0 = 8.312 \text{ J} \times 298 \ln(3166) \]
\[= 20.0 \text{ kJ/hr} \]

DISCUSSION

This example illustrates the evaluation of Gibb's energy when the equilibrium constant is known.

Contributors and Attributions

- Chung (Peter) Chieh (Professor Emeritus, Chemistry @ University of Waterloo)