A General Chemistry Textmap constructed to supplant Nivaldo Tro's textbook

Chemistry: A Molecular Approach

• Front Matter

◦ TitlePage
◦ InfoPage
◦ Table of Contents

• 1: Matter, Measurement, and Problem Solving

◦ 1.1: Atoms and Molecules
◦ 1.2: The Scientific Approach to Knowledge
◦ 1.3: The Classification of Matter
◦ 1.4: Physical and Chemical Changes and Properties
◦ 1.5: Energy - A Fundamental Part of Physical and Chemical Change
◦ 1.6: The Units of Measurement
◦ 1.7: The Reliability of a Measurement
◦ 1.8: Solving Chemical Problems
◦ 1.E: Matter, Measurement, and Problem Solving (Exercises)
2: Atoms and Elements

- 2.2: Early Ideas about the Building Blocks of Matter
- 2.3: Modern Atomic Theory and the Laws That Led to It
- 2.4: The Discovery of the Electron
- 2.5: The Structure of The Atom
- 2.6: Protons, Neutrons, and Electrons in Atoms
- 2.7: Finding Patterns - The Periodic Law and the Periodic Table
- 2.8: The Average Mass of an Element’s Atoms
- 2.9: Molar Mass - Counting Atoms by Weighing Them
- E: Atoms and Elements (Exercises)

3: Molecules, Compounds and Chemical Equations

- 3.1: Hydrogen, Oxygen, and Water
- 3.2: Chemical Bonds
- 3.3: Representing Compounds- Chemical Formulas and Molecular Models
- 3.4: An Atomic-Level Perspective of Elements and Compounds
- 3.5: Ionic Compounds- Formulas and Names
- 3.6: Molecular Compounds- Formulas and Names
- 3.7: Summary of Inorganic Nomenclature
- 3.8: Composition of Compounds
- 3.9: Determining a Chemical Formula from Experimental Data
• 4: Chemical Reactions and Aqueous Reactions
 ◦ 4.1: Global Warming and the Combustion of Fossil Fuels
 ◦ 4.2: How Much Carbon Dioxide?
 ◦ 4.3: Limiting Reactant, Theoretical Yield, and Percent Yield
 ◦ 4.4: Solution Concentration and Solution Stoichiometry
 ◦ 4.5: Types of Aqueous Solutions and Solubility
 ◦ 4.6: Precipitation Reactions
 ◦ 4.7: Representing Aqueous Reactions- Molecular, Ionic, and Complete Ionic Equations
 ◦ 4.8: Acid-Base and Gas-Evolution Reactions
 ◦ 4.9: Oxidation-Reduction Reactions

• 5: Gases

In this chapter, we explore the relationships among pressure, temperature, volume, and the amount of gases. You will learn how to use these relationships to describe the physical behavior of a sample of both a pure gaseous substance and mixtures of gases. By the end of this chapter, your understanding of the gas laws and the model used to explain the behavior of gases.

 ◦ 5.1: Water from Wells- Atmospheric Pressure at Work
 ◦ 5.2: Pressure- The Result of Particle Collisions
 ◦ 5.3: The Simple Gas Laws- Boyle’s Law, Charles’s Law and Avogadro’s Law
5.4: The Ideal Gas Law
5.5: Applications of the Ideal Gas Law- Molar Volume, Density and Molar Mass of a Gas
5.6: Mixtures of Gases and Partial Pressures
5.7: Gases in Chemical Reactions- Stoichiometry Revisited
5.8: Kinetic Molecular Theory- A Model for Gases
5.9: Mean Free Path, Diffusion, and Effusion of Gases
5.10: Real Gases- The Effects of Size and Intermolecular Forces
5.E: Gases (Exercises)

6: Thermochemistry

6.1: Light the Furnace- The Nature of Energy and Its Transformations
6.2: The Nature and Types of Energy
6.3: Quantifying Heat and Work
6.4: The First Law of Thermodynamics
6.5: Constant Volume Calorimetry- Measuring ΔU for Chemical Reactions
6.6: Enthalpy- The Heat Evolved in a Chemical Reaction at Constant Pressure
6.7: Constant Pressure Calorimetry- Measuring ΔH for Chemical Reactions
6.8: Relationships Involving Enthalpy of Reactions
6.9: Enthalpies of Reaction from Standard Heats of Formation
6.10: Energy Use and The Environment

7: The Quantum-Mechanical Model of the Atom
• 7.1: Schrödinger's Cat
• 7.2: The Nature of Light
• 7.3: Atomic Spectroscopy and The Bohr Model
• 7.4: The Wavelength Nature of Matter
• 7.5: Quantum Mechanics and The Atom
• 7.6: The Shape of Atomic Orbitals
• 7.6: The Shape of Atomic Orbitals (Exercises)

• 8: Periodic Properties of the Elements

 • 8.1: Nerve Signal Transmission
 • 8.2: The Development of the Periodic Table
 • 8.3: Electron Configurations- How Electrons Occupy Orbitals
 • 8.4: Electron Configurations, Valence Electrons, and the Periodic Table
 • 8.5: The Explanatory Power of the Quantum-Mechanical Model
 • 8.6: Periodic Trends in the Size of Atoms and Effective Nuclear Charge
 • 8.7: Ions- Configurations, Magnetic Properties, Radii, and Ionization Energy
 • 8.8: Electron Affinities and Metallic Character
 • 8.9: Examples of Periodic Chemical Behavior
 • 8.6: Periodic Properties of the Elements (Exercises)

• 9: Chemical Bonding I- Lewis Structures and Determining Molecular Shapes
9.1: Bonding Models and AIDS Drugs
9.2: Types of Chemical Bonds
9.3: Representing Valance Electrons with Dots
9.4: Ionic Bonding
9.5: Covalent Bonding- Lewis Structure
9.6: Electronegativity and Bond Polarity
9.7: Lewis Structures
9.8: Resonance and Formal Charge
9.9: Exceptions to the Octet Rule
9.10: Bond Energies and Bond Lengths
9.11: Bonding in Metals
9.1E: Chemical Bonding I (Exercises)

• 10: Chemical Bonding II- Valance Bond Theory and Molecular Orbital Theory

10.1: Artificial Sweeteners
10.2: VSEPR Theory - The Five Basic Shapes
10.3: VSPER Theory- The Effect of Lone Pairs
10.4: VSPER Theory - Predicting Molecular Geometries
10.5: Molecular Shape and Polarity
10.6: Valence Bond Theory- Orbital Overlap as a Chemical Bond
10.7: Valence Bond Theory- Hybridization of Atomic Orbitals
10.8: Molecular Orbital Theory- Electron Delocalization
• 11: Liquids, Solids, and Intermolecular Forces

 ◦ 11.1: Water in Zero Gravity
 ◦ 11.2: Solids, Liquids, and Gases- A Molecular Comparison
 ◦ 11.3: Intermolecular Forces- The Forces that Hold Condensed Phases Together
 ◦ 11.4: Intermolecular Forces in Action- Surface Tension, Viscosity, and Capillary Action
 ◦ 11.5: Vaporization and Vapor Pressure
 ◦ 11.6: Sublimation and Fusion
 ◦ 11.7: Heating Curve for Water
 ◦ 11.8: Phase Diagrams

• 11.9: Water - An Extraordinary Substance

• 12: Solids and Modern Materials

 ◦ 12.1: Discovery of Graphene
 ◦ 12.2: X-Ray Crystallography
 ◦ 12.3: Unit Cells and Basic Structures
 ◦ 12.4: The Fundamental Types of Crystalline Solids
 ◦ 12.5: The Structure of Ionic Solids
 ◦ 12.6: Network Covalent Atomic Solids- Carbon and Silicates
 ◦ 12.7: Ceramics, Cement, and Glass
 ◦ 12.8: Crystalline Solids- Band Theory
 ◦ 12.9: Polymers and Plastics
• 13: Solutions

- 13.1: Thirsty Solutions- Why You Should Not Drink Seawater
- 13.2: Types of Solutions and Solubility
- 13.3: Energetics of Solution Formation
- 13.4: Solution Equilibrium and Factors Affecting Solubility
- 13.5: Expressing Solution Concentration
- 13.6: Colligative Properties- Freezing Point Depression, Boiling Point Elevation, and Osmosis
- 13.7: The Colligative Properties of Strong Electrolyte Solutions
- 13.8: Colloids
- 13.E: Solutions (Exercises)

• 14: Chemical Kinetics

- 14.1: Catching Lizards
- 14.2: Rate of a Chemical Reaction
- 14.3: The Rate Law- The Effect of Concentration on Reaction Rate
- 14.4: The Integrated Rate Law- The Dependence of Concentration on Time
- 14.5: The Effect of Temperature on Reaction Rate
- 14.6: Reaction Mechanisms
- 14.7: Catalysis
• 15: Chemical Equilibrium

- 15.1: The Concept of Dynamic Equilibrium
- 15.2: The Equilibrium Constant (K)
- 15.3: Expressing the Equilibrium Constant in Terms of Pressure
- 15.4: Calculating the Equilibrium Constant From Measured Equilibrium Concentrations
- 15.5: Heterogenous Equilibria - Reactions Involving Solids and Liquids
- 15.6: The Reaction Quotient- Predicting the Direction of Change
- 15.7: Finding Equilibrium Concentrations
- 15.8: Le Châtelier's Principle- How a System at Equilibrium Responds to Disturbances

• 16: Acids and Bases

- 16.1: Heartburn
- 16.2: The Nature of Acids and Bases
- 16.3: Definitions of Acids and Bases
- 16.4: Acid Strength and the Acid Dissociation Constant (Ka)
- 16.5: Autoionization of Water and pH
- 16.6: Finding the [H3O+] and pH of Strong and Weak Acid Solutions
- 16.7: Base Solutions
- 16.8: The Acid-Base Properties of Ions and Salts
- 16.9: Polyprotic Acids
- 16.10: Acid Strength and Molecular Structure
16.11: Lewis Acids and Bases
 ◦ 16.12: Acid rain

• 17: Aqueous Ionic Equilibrium

 ◦ 17.1: The Danger of Antifreeze
 ◦ 17.2: Buffers- Solutions That Resist pH Change
 ◦ 17.3: Buffer Effectiveness- Buffer Capacity and Buffer Range
 ◦ 17.4: Titrations and pH Curves
 ◦ 17.5: Solubility Equilibria and the Solubility Product Constant
 ◦ 17.6: Precipitation
 ◦ 17.7: Qualitative Chemical Analysis
 ◦ 17.8: Complex Ion Equilibria
 ◦ 17.E: Aqueous Ionic Equilibrium (Exercises)

• 18: Gibbs Energy and Thermodynamics

 ◦ 18.1: Nature’s Heat Tax- You Can’t Win and You Can’t Break Even
 ◦ 18.2: Spontaneous and Nonspontaneous Processes
 ◦ 18.3: Entropy and the Second Law of Thermodynamics
 ◦ 18.4: Entropy Changes Associated with State Changes
 ◦ 18.5: Heat Transfer and Changes in the Entropy of the Surroundings
 ◦ 18.6: Gibbs Energy
We begin by examining the structure of the atomic nucleus and the factors that determine whether a particular nucleus is stable or decays spontaneously to another element. We then discuss the major kinds of nuclear decay reactions, as well as the properties and uses of the radiation emitted when nuclei decay. You will learn how radioactive emissions can be used to study the mechanisms of chemical reactions and biological processes.

- 20.1: Diagnosing Appendicitis
• 21: Organic Chemistry

- 21.1: Fragrances and Odor
- 21.2: Carbon- Why It Is Unique
- 21.3: Hydrocarbons- Compounds Containing Only Carbon and Hydrocarbon
- 21.4: Alkanes- Saturated Hydrocarbons
- 21.5: Alkenes and Alkynes
- 21.6: Hydrocarbon Reactions
- 21.7: Aromatic Hydrocarbons
- 21.8: Functional Groups
- 21.9: Alcohols
- 21.10: Aldehydes and Ketones
- 21.11: Carboxylic Acids and Esters
- 21.12: Ethers
- 21.13: Amines
• 22: Biochemistry

- 22.1: Diabetes and the Synthesis of Human Insulin
- 22.2: Lipids
- 22.3: Carbohydrates
- 22.4: Proteins and Amino Acids
- 22.5: Protein Structure
- 22.6: Nucleic Acids- Blueprints for Proteins
- 22.7: DNA Replication, the Double Helix, and Protein Synthesis

• 23: Chemistry of the Nonmetals

- 23.1: Insulated Nanowires
- 23.2: The Main-Group Elements- Bonding and Properties
- 23.3: The Most Common Matter- Silicates
- 23.4: Boron and Its Amazing Structures
- 23.5: Carbon, Carbides, and Carbonates
- 23.6: Nitrogen and Phosphorus- Essential Elements for Life
- 23.7: Oxygen
- 23.8: Sulfur- A Dangerous and Useful Element
- 23.9: Halogens- Reactive Chemicals with High Electronegativity
- 23.E: Chemistry of the Nonmetals (Exercises)
• **24: Metals and Metallurgy**

- 24.1: Vanadium - A Problem and an Opportunity
- 24.2: The General Properties and Natural Distribution of Metals
- 24.3: Metallurgical Processes
- 24.4: Metal Structures and Alloys
- 24.5: Sources, Properties, and Products of Some of the 3d Transition Metals

• **25: Transition Metals and Coordination Compounds**

- 25.1: The Colors of Rubies and Emeralds
- 25.2: Properties of Transition Metals
- 25.3: Coordination Compounds
- 25.4: Structure and Isomerization
- 25.5: Bonding in Coordinate Compounds
- 25.6: Applications of Coordination Compounds
- 25.E: Transition Metals and Coordination Compounds (Exercises)
• Back Matter

- Index
- Glossary