Objectives

After completing this section, you should be able to

1. write an equation for the oxidation of an aldehyde using
 b. Tollens reagent.
2. explain the difference in structure which makes aldehydes susceptible to oxidation and ketones difficult to oxidize.
3. identify the carboxylic acid produced when a given aldehyde is oxidized.
4. identify the aldehyde, the oxidizing agent, or both, needed to prepare a given carboxylic acid.

Key Terms

Make certain that you can define, and use in context, the key term below.

- Tollens reagent

Study Notes

An important difference between aldehydes and ketones is the ease with which the latter can be oxidized. Tollen’s reagent is a classical organic laboratory technique to test for the presence of an aldehyde. The reagent consists of silver(I) ions dissolved in dilute ammonia. When the aldehyde is oxidized, the silver(I) ions are reduced to silver metal. When the reaction is carried out in a test-tube, the metallic silver is deposited on the walls of the tube, giving it a mirrorlike appearance. This characteristic accounts for the term “silver mirror test” which is applied when this reaction is used to distinguish between aldehydes and ketones—the latter, of course, do not react.

Why do aldehydes and ketones behave differently?

Aldehydes have a proton attached to the carbonyl carbon which can be abstracted, allowing them to be easily oxidized to form carboxylic acids. The lack of this hydrogen, makes ketones generally inert to these oxidation conditions. Nevertheless, ketones can be oxidized but only under extreme conditions.

\[
\begin{align*}
\text{Aldehyde} & \quad \text{Ketone} \\
R'\text{C} & \quad R'\text{C} \\
\text{O} & \quad \text{O} \\
& \quad R' \quad R
\end{align*}
\]

The Tollens test is a classical organic laboratory technique which clearly shows the different oxidation ability of aldehydes and ketones. Tollens reagent tests for the presence of an easily oxidized aldehyde in a solution. Tollens reagent consists of silver(I) ions dissolved in dilute ammonia. When the aldehyde is oxidized, the silver(I) ions are reduced to silver metal. When the reaction is carried out in a test-tube, the metallic silver is deposited on the walls of the tube, giving it a mirrorlike appearance (Figure 1). This characteristic accounts for the term “silver mirror test” which is applied
when this reaction is used to distinguish between aldehydes and ketones—the latter, of course, do not react.

Figure \(\PageIndex{1}\): Tollens test for Aldehyde: Left Side Positive (silver mirror), Right Side Negative

\[\text{Oxidation of hexanal to form hexanoic acid using Tollens Reagent} \]

Oxidation of Aldehydes

There are a wide variety of reagents which can cause the oxidation of aldehydes to carboxylic acids. The most common reagent for this conversion is \(\text{CrO}_3\) in aqueous acid also called Jones Reagent. This reaction generally gives good yields at room temperature.

\[\text{Oxidation of hexanal to form hexanoic acid using Jones Reagent} \]

Mechanism

The oxidation of aldehydes occur through the reversible nucleophilic addition of water to the carbonyl to form a gem-diol functional group. This addition reaction is discussed in greater detail in Section 19.5. One of the OH groups of the gem-diol is oxidized to create a carbonyl (C=O) thereby forming a carboxylic acid.
Oxidation of Ketones

Because ketones do not have hydrogen atom attached to their carbonyl, they are resistant to oxidation. Only very strong oxidizing agents such as potassium manganate(VII) (potassium permanganate) solution oxidize ketones. However, this type of powerful oxidation occurs with cleavage, breaking carbon-carbon bonds and forming two carboxylic acids. Because of this destructive nature this reaction is rarely used.

\[\text{Oxidation of cyclopentanone to form pentanedioic acid} \]

Baeyer-Villiger Oxidation

Peroxycarboxylic acids, such as meta-chloroperoxybenzoic acid (mCPBA), are capable of oxidizing ketones to esters in a reaction known as the Baeyer-Villiger oxidation. Baeyer-Villiger oxidation has considerable synthetic utility because ketones normally are difficult to oxidize without degrading the structure to smaller fragments.

Baeyer-Villiger oxidations can be used with both straight chain ketones and cyclic ketones as shown in the following examples.
Mechanism

The mechanism of the Baeyer-Villiger oxidation has been studied extensively and is of interest because it involves a rearrangement step in which a substituent group (R) moves from a carbon to an oxygen. In the first step, one oxygen from the peroxycarboxylic acid adds to the carbonyl group of the ketone. The adduct has multiple oxygen atoms on which protons can reside. The proton shift in the second step allows for the elimination of a carboxylic acid, R\(^1\)CO\(_2\)H in the third step. The resulting intermediate has an electron-deficient oxygen atom with only six valence electrons. As with carbocations, a neighboring R group shifts with its bonding electron-pair to the electron-deficient (oxygen) atom forming an ester in the final step of the mechanism.

Step 1) Nucleophilic attack on the carbonyl

Step 2) Protonation and Proton Transfer

Step 3) Formation of an electron deficient oxygen

Step 4) Migration of an Alkyl Group
Step 5) Deprotonation

Contributors and Attributions

- Dr. Dietmar Kennepohl FCIC (Professor of Chemistry, Athabasca University)
- Prof. Steven Farmer (Sonoma State University)
- Jim Clark (Chemguide.co.uk)
- Layne A. Morsch (University of Illinois Springfield)