Learning Objectives

• Name the different indoor pollutants and their sources.
• Know the harmful effects of indoor pollutants.

In both developed and developing nations, indoor air pollution poses a greater health risk than outdoor air pollution. According to the World Health Organization (WHO) and other agencies such as the Environmental Protection Agency (EPA), indoor air generally contains higher concentrations of toxic pollutants than outdoor air. Additionally, people generally spend more time indoors than outdoors, hence, the health effects from indoor air pollution in workplaces, schools, and homes are far greater than outdoor. Indoor pollution sources that release gases or particles into the air are the primary cause of indoor air quality problems in homes. Inadequate ventilation can increase indoor pollutant levels by not bringing in enough outdoor air to dilute emissions from indoor sources and by not carrying indoor air pollutants out of the home.

Outdoor air enters and leaves a building by infiltration, natural ventilation, and mechanical ventilation. In infiltration, outdoor air flows into the house through openings, joints, and cracks in walls, floors, and ceilings, and around windows and doors. In natural ventilation, air moves through opened windows and doors. Air movement associated with infiltration and natural ventilation is caused by air temperature differences between indoors and outdoors and by wind. Finally, there are a number of mechanical ventilation devices, from outdoor-vented fans that intermittently remove air from a single room, such as bathrooms and kitchen, to air handling systems that use fans and duct work to continuously remove indoor air and distribute filtered and conditioned outdoor air to strategic points throughout the house. The rate at which outdoor air replaces indoor air is described as the air exchange rate. When there is little infiltration, natural ventilation, or mechanical ventilation, the air exchange rate is low and pollutant levels can increase. High temperature and humidity levels can also increase concentrations of some pollutants.

There are many sources of indoor air pollution in any home (Figure 1). These include combustion sources such as oil, gas, kerosene, coal, wood, and tobacco products; building materials and furnishings as diverse as deteriorated, asbestos-containing insulation, wet or damp carpet, and cabinetry or furniture made of certain pressed wood products; products for household cleaning and maintenance, personal care, or hobbies; central heating and cooling systems and humidification devices. Pollutants causing indoor air pollution can also originate from outside sources such as radon, pesticides, and outdoor air pollution. Radon is a naturally occurring radioactive gas produced from the decay of uranium in rock. If a building/home is constructed in an area with uranium containing rock, the gas can seep through the foundations and accumulate in basements. Exposure to radon can cause lung cancer.

The relative importance of any single source depends on how much of a given pollutant it emits and how hazardous those emissions are. In some cases, factors such as how old the source is and whether it is properly maintained are significant. For example, an improperly adjusted gas stove can emit significantly more carbon monoxide than one that is properly adjusted. Some sources, such as building materials, furnishings, and household products like air fresheners, release pollutants more or less continuously. Other sources, related to activities carried out in the home, release pollutants intermittently. These include smoking, the use of unvented or malfunctioning stoves, furnaces, or space heaters, the use of solvents in cleaning and hobby activities, the use of paint strippers in redecorating activities, and the use of cleaning products and pesticides in house-keeping. High pollutant concentrations can remain in the air for long periods after some of these activities.
Risks from indoor air pollution differ between less industrialized and industrialized nations. Indoor pollution has a greater impact in less industrialized nations where many people use cheaper sources of fuel such as wood, charcoal, and crop waste among others for cooking and heating, often with little or no ventilation. The most significant indoor pollutant, therefore, is soot and carbon monoxide. In industrialized nations, the primary indoor air health risks are cigarette smoke and radon.

Figure \(\PageIndex{1}\): Sources of indoor air pollution. Image source: EPA http://www.epa.gov/iaq/pdfs/careforyourair.pdf

Combustion Pollutants

Combustion pollutants are gases or particles that come from burning materials. In homes, the major source of combustion pollutants are improperly vented or unvented fuel-burning appliances such as space heaters, wood stoves, gas stoves, water heaters, dryers, and fireplaces. The types and amounts of pollutants produced depends on the type of appliance, how well the appliance is installed, maintained and vented and the kind of fuel it uses. Common combustion pollutants include:

- **Carbon monoxide (CO)** which is a colorless, odorless gas that interferes with the delivery of oxygen throughout the body. Carbon monoxide causes headaches, dizziness, weakness, nausea and even death. Average levels in homes without gas stoves vary from 0.5 to 5 parts per million (ppm). Levels near properly adjusted gas stoves are often 5 to 15 ppm and those near poorly adjusted stoves may be 30 ppm or higher.

- **Nitrogen dioxide (NO\(_2\))** which is a colorless, odorless gas that causes eye, nose and throat irritation, shortness of breath, and an increased risk of respiratory infection. Average level in homes without combustion appliances is about half that of outdoors. In homes with gas stoves, kerosene heaters or un-vented gas space heaters, indoor levels often exceed outdoor levels.

- **Particulate Matter (PM)** which refers to fine particles that forms in smoke when wood or other organic matter burns.

- **Other pollutants** from wood smoke In addition to particle pollution, wood smoke contains several toxic harmful air pollutants including benzene, formaldehyde, acrolein, and polycyclic aromatic hydrocarbons (PAHs).
Secondhand Smoke

Secondhand smoke is a mixture of the smoke given off by the burning of tobacco products, such as cigarettes, cigars or pipes and the smoke exhaled by smokers. Secondhand smoke is also called environmental tobacco smoke (ETS). Exposure to secondhand smoke is sometimes called involuntary or passive smoking. Secondhand smoke, classified by EPA as a Group A carcinogen, contains more than 7,000 substances. Secondhand smoke exposure commonly occurs indoors, particularly in homes and cars. Secondhand smoke can move between rooms of a home and between apartment units. Opening a window or increasing ventilation in a home or car is not protective from secondhand smoke.

Radon

Radon is a radioactive gas that results from the natural decay of uranium and radium found in nearly all rocks and soils. Elevated radon levels have been found in every state. Radon is in the atmosphere and can also be found in ground water. The national average for radon in outdoor air is 0.4 picocuries per liter (pCi/L), while the average for indoor air is 1.3 pCi/L.

Any building can have high levels of radon, including new and old homes, well-sealed and drafty homes, office buildings and schools, and homes with or without basements. Radon gas can get into buildings through cracks in solid floors and walls, construction joints, gaps in suspended floors and around service pipes, cavities inside walls, the water supply and building materials. Testing is the only way to know if your home has elevated radon levels. EPA recommends fixing your home when the radon level is at or above 4 pCi/L.

Figure \(\PageIndex{2}\): Sources of Radon. Image source: EPA https://www.epa.gov/radiation/radionuclide-basics-radon

EPA estimates that about 21,000 lung cancer deaths each year in the U.S. are radon-related. Exposure to radon is the second leading cause of lung cancer after smoking. For most people, radon is the single greatest environmental source of radiation exposure. EPA recommends that all homes and schools be tested for radon. For smokers, the risk of lung cancer is heightened due to the combined effects of radon and smoking.

Other Indoor Pollutants

Molds are usually not a problem indoors, unless mold spores land on a wet or damp spot and begin growing. Molds have the potential to cause health problems. Molds produce allergens (substances that can cause allergic reactions) and irritants. Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals. Allergic
responses include hay fever-type symptoms, such as sneezing, runny nose, red eyes, and skin rash.

Allergic reactions to mold are common. They can be immediate or delayed. Molds can also cause asthma attacks in people with asthma who are allergic to mold. In addition, mold exposure can irritate the eyes, skin, nose, throat, and lungs of both mold-allergic and non-allergic people. Symptoms other than the allergic and irritant types are not commonly reported as a result of inhaling mold.

Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Concentrations of many VOCs are consistently higher indoors (up to ten times higher) than outdoors. VOCs are emitted by a wide array of products numbering in the thousands.

Organic chemicals are widely used as ingredients in household products. Paints, varnishes and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.

EPA's Office of Research and Development's "Total Exposure Assessment Methodology (TEAM) Study" (Volumes I through IV, completed in 1985) found levels of about a dozen common organic pollutants to be 2 to 5 times higher inside homes than outside, regardless of whether the homes were located in rural or highly industrial areas. TEAM studies indicated that while people are using products containing organic chemicals, they can expose themselves and others to very high pollutant levels, and elevated concentrations can persist in the air long after the activity is completed.

VOCs are emitted by a wide array of products used in homes including paints and lacquers, paint strippers, cleaning supplies, varnishes and waxes, pesticides, building materials and furnishings, office equipment, moth repellents, air fresheners, and dry-cleaned clothing. VOCs evaporate into the air when these products are used or sometimes even when they are stored.

Volatile organic compounds irritate the eyes, nose and throat, and cause headaches, nausea, and damage to the liver, kidneys and central nervous system. Some of them can cause cancer.

Asbestos is a mineral fiber that occurs in rock and soil. Because of its fiber strength and heat resistance asbestos has been used in a variety of building construction materials for insulation and as a fire retardant. Asbestos has also been used in a wide range of manufactured goods, mostly in building materials (roofing shingles, ceiling and floor tiles, paper products, and asbestos cement products), friction products (automobile clutch, brake, and transmission parts), heat-resistant fabrics, packaging, gaskets, and coatings.

Asbestos fibers may be released into the air by the disturbance of asbestos-containing material during product use, demolition work, building or home maintenance, repair, and remodeling. In general, exposure may occur only when the asbestos-containing material is disturbed or damaged in some way to release particles and fibers into the air.

Three of the major health effects associated with asbestos exposure are:

- lung cancer
mesothelioma, a rare form of cancer that is found in the thin lining of the lung, chest and the abdomen and heart

asbestosis, a serious progressive, long-term, non-cancer disease of the lungs

Improving Your Indoor Air Quality

Take steps to help improve your air quality and reduce your IAQ-related health risks at little or no cost by:

Controlling the sources of pollution: Usually the most effective way to improve indoor air is to eliminate individual sources or reduce their emissions.

Ventilating: Increasing the amount of fresh air brought indoors helps reduce pollutants inside. When weather permits, open windows and doors, or run an air conditioner with the vent control open. Bathroom and kitchen fans that exhaust to the outdoors also increase ventilation and help remove pollutants.

Always ventilate and follow manufacturers’ instructions when you use products or appliances that may release pollutants into the indoor air.

Changing filters regularly: Central heaters and air conditioners have filters to trap dust and other pollutants in the air. Make sure to change or clean the filters regularly, following the instructions on the package.

Adjusting humidity: The humidity inside can affect the concentrations of some indoor air pollutants. For example, high humidity keeps the air moist and increases the likelihood of mold.

Keep indoor humidity between 30 and 50 percent. Use a moisture or humidity gauge, available at most hardware stores, to see if the humidity in your home is at a good level. To increase humidity, use a vaporizer or humidifier. To decrease humidity, open the windows if it is not humid outdoors. If it is warm, turn on the air conditioner or adjust the humidity setting on the humid

Get a quick glimpse of some of the most important ways to protect the air in your home by touring the Indoor Air Quality (IAQ) House. Room-by-room, you'll learn about the key pollutants and how to address them.

Interactive Version

Text Version

Summary

- Indoor pollutants include combustion pollutants (from burning of oil, gas, kerosene, coal, wood, and tobacco products); building materials and furnishings products for household cleaning and maintenance, personal care, or hobbies; central heating and cooling systems and humidification devices.
• Pollutants causing indoor air pollution can also originate from outside sources such as radon, pesticides, and outdoor air pollution.
• Indoor pollutants can cause serious health problems to sensitive groups.
• Several suggestions were provided to improve indoor air quality.

Contributors and Attributions

Marisa Alviar-Agnew (Sacramento City College)

US Environmental Protection Agency