Figure 1 and the isotope abundance data from Table 1, we can see that there are 1.08 ^{13}C atoms for every 100 ^{12}C atoms, and the ^{13}C peak will be 1.08% as large as the ^{12}C peak.

The example above is simple, but the same methods can be applied to determine isotope peaks in more complicated molecules as well. The molecule C$_4$Br$_1$O$_2$H$_5$ has several isotope effects: ^{13}C, ^2H, ^{81}Br, ^{17}O, and ^{18}O all must be taken into account. First we will look at the (M+1)$^+$ peak in comparison with the M$^+$ peak. Only isotopes that will increase the value of M by 1 must be taken into consideration here – since ^{81}Br and ^{18}O would both increase M by 2, they can be ignored (the most abundant isotopes for Br and O are ^{79}Br and ^{16}O). Like the previous example, there are 1.08 ^{13}C atoms for every 100 ^{12}C atoms. However, there are 4 carbon atoms in our molecule, and any one of them being a ^{13}C atom would result in a molecule with mass (M+1). So it is necessary to multiply the probability of an atom being a ^{13}C atom by the number of C atoms in the molecule. Therefore, we have:

$$4\text{C} \times 1.08 = 4.32 = \text{molecules with a } ^{13}\text{C} \text{ atom per } 100 \text{ molecules}$$

We can repeat this analysis for ^2H and ^{17}O:

$$5\text{H} \times 0.015 = 0.075 = \text{molecules with a } ^2\text{H} \text{ atom per } 100 \text{ molecules}$$

$$2\text{O} \times 0.04 = 0.08 = \text{molecules with a } ^{17}\text{O} \text{ atom per } 100 \text{ molecules}$$

Any of the three isotopes, ^{13}C, ^2H, or ^{17}O occurring in our molecule would result in an (M+1)$^+$ peak. To get the ratio of (M+1)$^+$/M$^+$, we need to add all three probabilities:

$$4.32 + 0.075 + 0.08 = 4.475 = (M+1)^+ \text{ molecules per } 100 \text{ M}^+ \text{ molecules}$$

We can say then that the (M+1)$^+$ peak is 4.475% as high as the M$^+$ peak.

A similar analysis can be easily repeated for (M+2)$^+$:
\[1\text{Br} \times 98 = 98 = \text{molecules with an } ^{81}\text{Br molecule per 100 molecules} \]

\[2\text{O} \times 0.2 = 0.4 = \text{molecules with an } ^{18}\text{O molecule per 100 molecules} \]

\[98 + 0.4 = 98.4 = (M+2)^+ \text{ molecules per 100 M}^+ \text{ molecules} \]

The \((M + 2)^+\) peak is therefore 98.4\% as tall as the \(M^+\) peak.

This method is useful because using isotopic differences, it is possible to differentiate two molecules of identical mass numbers.

References

Outside Links

 - This wikipedia page is about the Mass Spectrometer instrument.
 - This wikipedia page is more directly related to isotope effects, as it focuses on reading mass spectra.
- http://www.chem.uoa.gr/applets/AppletMS/Appl_Ms2.html
 - This applett is fun to play with. It generates isotope peaks in a specified mass fragment.

Problems

1. Predict the \((M+1)^+\) relative peak heights for meta-nitrobenzene.
2. Why would this method of looking at isotope ratios relating to peak heights make distinguishing molecules with Chlorine and Bromine from other molecules very easy?
3. Predict the \((M+4)^+\) relative peak heights for \(C_3H_2SCl_2\)
4. Predict the \((M+1)^+\) and \((M+2)^+\) relative peak heights for 1,1,1-tribromo-2-propene

Contributors

- Morgan Kelley (UCD)