Figure 1 and the isotope abundance data from Table 1, we can see that there are 1.08 ^{13}C atoms for every 100 ^{12}C atoms, and the ^{13}C peak will be 1.08% as large as the ^{12}C peak.

The example above is simple, but the same methods can be applied to determine isotope peaks in more complicated molecules as well. The molecule $\text{C}_4\text{Br}_1\text{O}_2\text{H}_5$ has several isotope effects: ^{13}C, ^2H, ^{81}Br, ^{17}O, and ^{18}O all must be taken into account. First we will look at the $(\text{M}+1)^+$ peak in comparison with the M^+ peak. Only isotopes that will increase the value of M by 1 must be taken into consideration here – since ^{81}Br and ^{18}O would both increase M by 2, they can be ignored (the most abundant isotopes for Br and O are ^{79}Br and ^{16}O). Like the previous example, there are 1.08 ^{13}C atoms for every 100 ^{12}C atoms. However, there are 4 carbon atoms in our molecule, and any one of them being a ^{13}C atom would result in a molecule with mass $(\text{M}+1)$. So it is necessary to multiply the probability of an atom being a ^{13}C atom by the number of C atoms in the molecule. Therefore, we have:

$$4\text{C} \times 1.08 = 4.32 = \text{molecules with a } ^{13}\text{C} \text{ atom per 100 molecules}$$

We can repeat this analysis for ^2H and ^{17}O:

$$5\text{H} \times 0.015 = 0.075 = \text{molecules with a } ^2\text{H} \text{ atom per 100 molecules}$$

$$2\text{O} \times 0.04 = 0.08 = \text{molecules with a } ^{17}\text{O} \text{ atom per 100 molecules}$$

Any of the three isotopes, ^{13}C, ^2H, or ^{17}O occurring in our molecule would result in an $(\text{M}+1)^+$ peak. To get the ratio of $(\text{M}+1)^+/\text{M}^+$, we need to add all three probabilities:

$$4.32 + 0.075 + 0.08 = 4.475 = (\text{M}+1)^+ \text{ molecules per 100 } \text{M}^+ \text{ molecules}$$

We can say then that the $(\text{M}+1)^+$ peak is 4.475% as high as the M^+ peak.

A similar analysis can be easily repeated for $(\text{M}+2)^+$:
$1\text{Br} \times 98 = 98 = \text{molecules with an } ^{81}\text{Br \ molecule per 100 molecules}$

$2\text{O} \times 0.2 = 0.4 = \text{molecules with an } ^{18}\text{O \ molecule per 100 molecules}$

$98 + 0.4 = 98.4 = (M+2)^+ \text{ molecules per 100 } M^+ \text{ molecules}$

The $(M + 2)^+$ peak is therefore 98.4% as tall as the M^+ peak.

This method is useful because using isotopic differences, it is possible to differentiate two molecules of identical mass numbers.

Contributors and Attributions

- Morgan Kelley (UCD)