Objectives

After completing this section, you should be able to

1. write the detailed mechanism for the reaction of bromine with benzene in the presence of a suitable catalyst.
2. draw the resonance contributors for the carbocation which is formed during the reaction of bromine with benzene.
3. compare the reaction which takes place between bromine and benzene and the reaction which takes place between bromine and an alkene.
4. draw an energy diagram for the reaction of bromine with benzene.
5. identify the reagents required to bring about aromatic bromination.
6. write an equation to represent aromatic bromination.

Study Notes

The Mechanism for Electrophilic Substitution Reactions of Benzene is the key to understanding electrophilic aromatic substitution. You will see similar equations written for nitration, sulphonation, acylation, etc., with the major difference being the identity of the electrophile in each case.

Note that the carbocation intermediate formed has a number of resonance forms. Also, you may wish to review Section 8.2 to meet Objective 3.

Halogenation is an example of electrophillic aromatic substitution. In electrophilic aromatic substitutions, a benzene is attacked by an electrophile which results in substitution of hydrogens. However, halogens are not electrophillic enough to break the aromaticity of benzenes, which require a catalyst to activate.

A Mechanism for Electrophilic Substitution Reactions of Benzene

A two-step mechanism has been proposed for these electrophilic substitution reactions. In the first, slow or rate-determining, step the electrophile forms a sigma-bond to the benzene ring, generating a positively charged benzenonium intermediate. In the second, fast step, a proton is removed from this intermediate, yielding a substituted benzene ring. The following four-part illustration shows this mechanism for the bromination reaction. Also, an animated diagram may be viewed.
Preliminary step: Formation of the strongly electrophilic bromine cation

The bromine molecule is polarized so that one end is electrophilic and the other nucleophilic. Although the electrophilic end reacts easily with simple alkenes and dienes, it fails to react with the more stable and weaker nucleophilic electron system of benzene.

Ferric bromide and other Lewis acids enhance the electrophilic strength of bromine by forming a complex anion, in this case FeBr₄⁻. At the same time, this complexation creates the strongly electrophilic bromine cation, which reacts with nucleophiles.
Step 1: The electrophile forms a sigma-bond to the benzene ring, generating a positively charged benzenonium intermediate.

The π-electrons of the benzene ring are polarized by the electrophile, and two electrons are diverted to form a σ-bond to the bromine atom. The positive charge is thereby relocated on the six-carbon ring, where it is conjugated with the remaining double bonds. The resulting intermediate is a benzenonium cation. Since the aromatic character of benzene is lost, the activation energy (ΔG^*) for this reaction is large. Note that the charge alternates so it is greatest at the ortho and para to the location of the bromine attack.
This mechanism for electrophilic aromatic substitution should be considered in context with other mechanisms involving carbocation intermediates. These include SN1 and E1 reactions of alkyl halides, and Brønsted acid addition reactions of alkenes.

To summarize, when carbocation intermediates are formed one can expect them to react further by one or more of the following modes:

1. The cation may bond to a nucleophile to give a substitution or addition product.
2. The cation may transfer a proton to a base, giving a double bond product.
3. The cation may rearrange to a more stable carbocation, and then react by mode #1 or #2.

SN1 and E1 reactions are respective examples of the first two modes of reaction. The second step of alkene addition reactions proceeds by the first mode, and any of these three reactions may exhibit molecular rearrangement if an initial unstable carbocation is formed. The carbocation intermediate in electrophilic aromatic substitution (the benzenonium ion) is stabilized by charge delocalization (resonance) so it is not subject to rearrangement. In principle it could react by either mode 1 or 2, but the energetic advantage of reforming an aromatic ring leads to exclusive reaction by mode 2 (ie. proton loss).
Problems

1. What reagents would you need to get the given product?

 Edit section
 What reagents would you need to get the given product

\[\text{[Diagram of benzene ring with Cl added]} \]

2. What product would result from the given reagents?

\[\text{[Diagram of benzene ring with I}_2 \text{ added]} \]

3. What is the major product given the reagents below?

\[\text{[Diagram of benzene ring with Br}_2 \cdot \text{FeBr}_3 \text{ added]} \]

4. Draw the formation of Cl\(^+\) from AlCl\(_3\) and Cl\(_2\)

5. Draw the mechanism of the reaction between Cl\(^+\) and a benzene.

Solutions

1. Cl\(_2\) and AlCl\(_3\) or Cl\(_2\) and FeCl\(_3\)

2. No Reaction

3.
Contributors

- [Dr. Dietmar Kennepohl](https://www.fcic.org) FCIC (Professor of Chemistry, [Athabasca University](https://www.athabascau.ca))
- Prof. Steven Farmer ([Sonoma State University](https://www.sonoma.edu))
- Catherine Nguyen