Objectives

After completing this section, you should be able to

1. describe the general nature of petroleum deposits, and recognize why petroleum is such an important source of organic compounds.
2. explain, in general terms, the processes involved in the refining of petroleum.
3. define the octane number of a fuel, and relate octane number to chemical structure.

Key Terms

Make certain that you can define, and use in context, the key terms below.

- catalytic cracking
- catalytic reforming
- fractional distillation
- octane number (octane rating)

Study Notes

The refining of petroleum into usable fractions is a very important industrial process. In the laboratory component of this course, you will have the opportunity to compare this industrial process to the procedure as it is performed in the laboratory.

Petroleum

The petroleum that is pumped out of the ground at locations around the world is a complex mixture of several thousand organic compounds, including straight-chain alkanes, cycloalkanes, alkenes, and aromatic hydrocarbons with four to several hundred carbon atoms. The identities and relative abundances of the components vary depending on the source. So Texas crude oil is somewhat different from Saudi Arabian crude oil. In fact, the analysis of petroleum from different deposits can produce a "fingerprint" of each, which is useful in tracking down the sources of spilled crude oil. For example, Texas crude oil is "sweet," meaning that it contains a small amount of sulfur-containing molecules, whereas Saudi Arabian crude oil is "sour," meaning that it contains a relatively large amount of sulfur-containing molecules.

Gasoline

Petroleum is converted to useful products such as gasoline in three steps: distillation, cracking, and reforming. Recall from Chapter 1 "Introduction to Chemistry" that distillation separates compounds on the basis of their relative volatility, which is usually inversely proportional to their boiling points. Part (a) in Figure 3.8.1 shows a cutaway drawing of a column used in the petroleum industry for separating the components of crude oil. The petroleum is heated to approximately 400°C (750°F), at which temperature it has become a mixture of liquid and vapor. This mixture, called the feedstock, is introduced into the refining tower. The most volatile components (those with the lowest boiling points) condense at the top of the column where it is cooler, while the less volatile components condense nearer the bottom.
Some materials are so nonvolatile that they collect at the bottom without evaporating at all. Thus the composition of the liquid condensing at each level is different. These different fractions, each of which usually consists of a mixture of compounds with similar numbers of carbon atoms, are drawn off separately. Part (b) in Figure 3.8.1 shows the typical fractions collected at refineries, the number of carbon atoms they contain, their boiling points, and their ultimate uses. These products range from gases used in natural and bottled gas to liquids used in fuels and lubricants to gummy solids used as tar on roads and roofs.

![Diagram of distillation column](Image)

Figure 3.8.1: The Distillation of Petroleum. (a) This is a diagram of a distillation column used for separating petroleum fractions. (b) Petroleum fractions condense at different temperatures, depending on the number of carbon atoms in the molecules, and are drawn off from the column. The most volatile components (those with the lowest boiling points) condense at the top of the column, and the least volatile (those with the highest boiling points) condense at the bottom.

The economics of petroleum refining are complex. For example, the market demand for kerosene and lubricants is much lower than the demand for gasoline, yet all three fractions are obtained from the distillation column in comparable amounts. Furthermore, most gasolines and jet fuels are blends with very carefully controlled compositions that cannot vary as their original feedstocks did. To make petroleum refining more profitable, the less volatile, lower-value fractions must be converted to more volatile, higher-value mixtures that have carefully controlled formulas. The first process used to accomplish this transformation is cracking, in which the larger and heavier hydrocarbons in the kerosene and higher-boiling-point fractions are heated to temperatures as high as 900°C. High-temperature reactions cause the carbon–carbon bonds to break, which converts the compounds to lighter molecules similar to those in the gasoline fraction. Thus in cracking, a straight-chain alkane with a number of carbon atoms corresponding to the kerosene fraction is converted to a mixture of hydrocarbons with a number of carbon atoms corresponding to the lighter gasoline fraction. The second process used to increase the amount of valuable products is called reforming; it is the chemical conversion of straight-chain alkanes to either branched-chain alkanes or mixtures of aromatic hydrocarbons. Using metals such as platinum brings about the necessary chemical reactions. The mixtures of products obtained from cracking and reforming are separated by fractional distillation.

Octane Ratings

The quality of a fuel is indicated by its octane rating, which is a measure of its ability to burn in a combustion engine without knocking or pinging. Knocking and pinging signal premature combustion (Figure 3.8.2), which can be caused either by an engine malfunction or by a fuel that burns too fast. In either case, the gasoline-air mixture detonates at the wrong point in the engine cycle, which reduces the power output and can damage valves, pistons, bearings, and other
engine components. The various gasoline formulations are designed to provide the mix of hydrocarbons least likely to cause knocking or pinging in a given type of engine performing at a particular level.

Figure 3.8.2: The Burning of Gasoline in an Internal Combustion Engine. (a) Normally, fuel is ignited by the spark plug, and combustion spreads uniformly outward. (b) Gasoline with an octane rating that is too low for the engine can ignite prematurely, resulting in uneven burning that causes knocking and pinging.

The octane scale was established in 1927 using a standard test engine and two pure compounds: n-heptane and isooctane (2,2,4-trimethylpentane). n-Heptane, which causes a great deal of knocking on combustion, was assigned an octane rating of 0, whereas isooctane, a very smooth-burning fuel, was assigned an octane rating of 100. Chemists assign octane ratings to different blends of gasoline by burning a sample of each in a test engine and comparing the observed knocking with the amount of knocking caused by specific mixtures of n-heptane and isooctane. For example, the octane rating of a blend of 89% isooctane and 11% n-heptane is simply the average of the octane ratings of the components weighted by the relative amounts of each in the blend. Converting percentages to decimals, we obtain the octane rating of the mixture:

\[0.89(100) + 0.11(0) = 89\tag{3.8.1}\]

As shown in Figure 3.8.3, many compounds that are now available have octane ratings greater than 100, which means they are better fuels than pure isooctane. In addition, antiknock agents, also called octane enhancers, have been developed. One of the most widely used for many years was tetraethyllead \([\text{(C}_2\text{H}_5\text{)}_4\text{Pb}]\), which at approximately 3 g/gal gives a 10–15-point increase in octane rating. Since 1975, however, lead compounds have been phased out as gasoline additives because they are highly toxic. Other enhancers, such as methyl t-butyl ether (MTBE), have been developed to take their place. They combine a high octane rating with minimal corrosion to engine and fuel system parts. Unfortunately, when gasoline containing MTBE leaks from underground storage tanks, the result has been contamination of the groundwater in some locations, resulting in limitations or outright bans on the use of MTBE in certain areas. As a result, the use of alternative octane enhancers such as ethanol, which can be obtained from renewable resources such as corn, sugar cane, and, eventually, corn stalks and grasses, is increasing.
Figure 3.8.3: The Octane Ratings of Some Hydrocarbons and Common Additives

<table>
<thead>
<tr>
<th>Name</th>
<th>Condensed Structural Formula</th>
<th>Octane Rating</th>
<th>Name</th>
<th>Condensed Structural Formula</th>
<th>Octane Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-heptane</td>
<td>CH₃(CH₂)₇CH₃</td>
<td>0</td>
<td>α-xylene</td>
<td>CH₃(CH₂)₆CH₂OH</td>
<td>107</td>
</tr>
<tr>
<td>n-hexane</td>
<td>CH₃(CH₂)₆CH₃</td>
<td>25</td>
<td>ethanol</td>
<td>CH₃(CH₂)OH</td>
<td>108</td>
</tr>
<tr>
<td>n-pentane</td>
<td>CH₃(CH₂)₅CH₃</td>
<td>62</td>
<td>isobutyl alcohol</td>
<td>(CH₃)₂COH</td>
<td>113</td>
</tr>
<tr>
<td>isooctane</td>
<td>(CH₃)₂COCH(CH₃)₂</td>
<td>100</td>
<td>β-xylene</td>
<td>H₃C-CH=CH-CH₂</td>
<td>116</td>
</tr>
<tr>
<td>benzene</td>
<td>Ⓐ</td>
<td>106</td>
<td>methyl t-butyl ether</td>
<td>H₃COC(CH₃)₂</td>
<td>116</td>
</tr>
<tr>
<td>methanol</td>
<td>CH₃OH</td>
<td>107</td>
<td>toluene</td>
<td>Ⓐ</td>
<td>118</td>
</tr>
</tbody>
</table>

Contributors

- [Dr. Dietmar Kennepohl](#) FCIC (Professor of Chemistry, [Athabasca University](#))