Organometallic reagents and carbon dioxide

Grignard reagents react with carbon dioxide in two stages. In the first, you get an addition of the Grignard reagent to the carbon dioxide. Dry carbon dioxide is bubbled through a solution of the Grignard reagent in ethoxyethane, made as described above. For example:

\[
\text{CH}_3\text{CH}_2\text{MgBr} + \text{O}_2 \rightarrow \text{CH}_3\text{CH}_2\text{C}^\text{O-MgBr}
\]

The \(\text{CH}_3\text{CH}_2\text{MgBr} \) adds on across this double bond.

The product is then hydrolyzed (reacted with water) in the presence of a dilute acid. Typically, you would add dilute sulphuric acid or dilute hydrochloric acid to the solution formed by the reaction with the CO\(_2\). A carboxylic acid is produced with one more carbon than the original Grignard reagent. The usually quoted equation is (without the red bits):

\[
\text{CH}_3\text{CH}_2\text{C}^\text{O-MgBr} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{C}^\text{O-H} + \text{Mg(OH)Br}
\]

This reacts with the dilute sulphuric acid to give ordinary Mg\(^{2+}\) ions, bromide ions and water.

Almost all sources quote the formation of a basic halide such as Mg(OH)Br as the other product of the reaction. That's actually misleading because these compounds react with dilute acids. What you end up with would be a mixture of ordinary hydrated magnesium ions, halide ions and sulfate or chloride ions - depending on which dilute acid you added.

\[
\text{O-C=O} \rightarrow 1) \text{R-MgBr or R-Li} \rightarrow \text{1)} \text{R-OH}
\]

Carbon Dioxide Carboxylic Acid