Point groups are used to describe molecular symmetries and are a condensed representation of the symmetry elements a molecule may possess. This includes both bond and orbital symmetry. Knowing molecular symmetry allows for a greater understanding of molecular structure and can help to predict many molecular properties.

Introduction

Point groups are a quick and easy way to gain knowledge of a molecule. They not only contain a molecule's symmetry elements, but also give rise to a character table, which is a complete set of irreducible representations for a point group. A molecule's point group can be determined by either elucidating each symmetry element contained in a molecule or by properly using the Schreiber chart (see below).

Point groups usually consist of (but are not limited to) the following elements:

- **E** - The identity operator. This operation leaves a molecule completely unchanged and exists for mathematical purposes.
- **C_n** - The C_n proper axis of rotation is a 360/n° rotation that when performed leaves a molecule the same. A proper rotation with the highest value of n is known as the major axis of rotation.
- **σ** - The mirror plane. The mirror plane can be described as a plane which produces a reflection of part of a molecule that is unnoticeable and can be labeled as either σ_h, σ_v, σ_d.
- **i** - The inversion center. A molecule has a center of inversion if, when inverted, the molecule is unchanged.

See the section on symmetry elements for a more thorough explanation of each.

Each point group is associated with a specific combination of symmetry elements

Each point group has its own combination of symmetry elements. Listed below are some of the many point groups and their respective symmetry elements, according to category, followed by a representative example.

Non axial groups

- C₁: E
- C₂: E, i

C_n groups

- C₂: E, C₂ (notice the major axis of rotation is the point group)
- C₃: E, C₃, C₃²
$\text{H}_2\text{O}_2 \text{ C}_2$

D_n groups

D_2: E $C_2(z)$, $C_2(y)$, $C_2(x)$ D_3: E, 2C_3, 3C_2

C_{nv} groups

C_{2v}: E, C2, $\sigma_v(xz)$, $\sigma_v'(yz)$ C_{3v}: E, 2C_3, 3σ_v

\[\text{H}_2\text{O} \text{ C}_2v \]

C_{nh} groups

C_{2h}: E, C2, i, σ_h C_{3h}: E, C3, C_3^2, σ_h, S3, S33

\[\text{B(OH)}_3 \]

D_{nh} groups

D_{2h}: E

\[\text{C}_2\text{H}_4 \text{ D}_{2h} \]
How to determine a molecule's point group

A molecule's point group can be determined by calculating all the symmetry elements of a molecule and matching them to a respective point group. This process, however, is greatly simplified when the Schreiber chart is used:

References

Outside Links

• Point groups in 3-D

Problems

1. Determine the point group of BH$_3$ by calculating all its symmetry elements then use the chart and determine which method is faster.
2. Determine the point groups of BH$_3$ and NH$_3$. Why is there a difference?
3. What is the point group of PPh$_3$?
4. Determine the point groups of CO$_2$ and H$_2$O and then compare them.
5. Propose a molecule with no symmetry. What is its point group?

Contributors