The internal energy of a system is identified with the random, disordered motion of molecules; the total (internal) energy in a system includes potential and kinetic energy. This is contrast to external energy which is a function of the sample with respect to the outside environment (e.g. kinetic energy if the sample is moving or potential energy if the sample is at a height from the ground etc). The symbol for Internal Energy Change is \(\Delta U \).

Energy on a smaller scale

- Internal energy includes energy on a microscopic scale
- It is the sum of all the microscopic energies such as:
 1. translational kinetic energy
 2. vibrational and rotational kinetic energy
 3. potential energy from intermolecular forces

Example

One gram of water at zero °Celsius compared with one gram of copper at zero °Celsius do NOT have the same internal energy because even though their kinetic energies are equal, water has a much higher potential energy causing its internal energy to be much greater than the copper's internal energy.

Internal Energy Change Equations

The first law of thermodynamics states:

\[\Delta U = dq + dw \]

where \(dq \) is heat and \(dw \) is work.

An isolated system cannot exchange heat or work with its surroundings making the change in internal energy equal to zero:

\[\Delta U_{\text{isolated system}} = 0 \]

Therefore, in an isolated system:

\[dq = -dw \]
Energy is Conserved

\[dU_{\text{isolated system}} = dU_{\text{system}} + dU_{\text{surroundings}}\]
\[dU_{\text{system}} = -dU_{\text{surroundings}}\]

The signs of internal energy

- Energy entering the system is **POSITIVE** (+), meaning heat is absorbed, \(q>0\). Work is thus done on the system, \(w>0\).
- Energy leaving the system is **NEGATIVE** (-), meaning heat is given off by the system, \(q<0\) and work is done by the system, \(w<0\).

Quick Notes

- A system contains **ONLY** Internal Energy
- A system does NOT contain energy in the form of heat or work
- Heat and work only exist during a change in the system; they are path functions
- Internal energy is a state function

Outside Links

Contributors

- Lorraine Alborzfar (UCD)