
The table is ordered such that the stronger (more reactive) reductants are at the top and the stronger oxidants are at the bottom.

<table>
<thead>
<tr>
<th>Standard Cathode (Reduction) Half-Reaction</th>
<th>Standard Reduction Potential E° (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Li}^+ (aq) + e^- \rightleftharpoons \text{Li} (s)$</td>
<td>-3.040</td>
</tr>
<tr>
<td>$\text{Ba}^{2+} + 2e^- \rightleftharpoons \text{Ba} (s)$</td>
<td>-2.92</td>
</tr>
<tr>
<td>$\text{Rb}^+ + e^- \rightleftharpoons \text{Rb} (s)$</td>
<td>-2.98</td>
</tr>
<tr>
<td>$\text{K}^+ (aq) + e^- \rightleftharpoons \text{K} (s)$</td>
<td>-2.93</td>
</tr>
<tr>
<td>$\text{Cs}^+ (aq) + e^- \rightleftharpoons \text{Cs} (s)$</td>
<td>-2.92</td>
</tr>
<tr>
<td>$\text{Ba}^{2+} (aq) + 2e^- \rightleftharpoons \text{Ba} (s)$</td>
<td>-2.91</td>
</tr>
<tr>
<td>$\text{Sr}^{2+} (aq) + 2e^- \rightleftharpoons \text{Sr} (s)$</td>
<td>-2.89</td>
</tr>
<tr>
<td>$\text{Ca}^{2+} (aq) + 2e^- \rightleftharpoons \text{Ca} (s)$</td>
<td>-2.84</td>
</tr>
<tr>
<td>$\text{Na}^+ (aq) + e^- \rightleftharpoons \text{Na} (s)$</td>
<td>-2.713</td>
</tr>
<tr>
<td>$\text{Mg(OH)}_2 (s) + 2e^- \rightleftharpoons \text{Mg} (s) + 2\text{OH}^-$</td>
<td>-2.687</td>
</tr>
<tr>
<td>$\text{La}^{3+} + 3e^- \rightleftharpoons \text{La} (s)$</td>
<td>-2.38</td>
</tr>
<tr>
<td>$\text{Mg}^{2+} (aq) + 2e^- \rightleftharpoons \text{Mg} (s)$</td>
<td>-2.356</td>
</tr>
<tr>
<td>$\text{Ce}^{3+} + 3e^- \rightleftharpoons \text{Ce} (s)$</td>
<td>-2.336</td>
</tr>
<tr>
<td>$\text{Al(OH)}_4^- + 3e^- \rightleftharpoons \text{Al} (s) + 4\text{OH}^-$</td>
<td>-2.310</td>
</tr>
<tr>
<td>$\text{AlF}_6^{3-} + 3e^- \rightleftharpoons \text{Al} (s) + 6\text{F}^-$</td>
<td>-2.07</td>
</tr>
<tr>
<td>$\text{Be}^{2+} + 2e^- \rightleftharpoons \text{Be} (s)$</td>
<td>-1.99</td>
</tr>
<tr>
<td>$\text{B(OH)}_4^- + 3e^- \rightleftharpoons \text{B} (s) + 4\text{OH}^-$</td>
<td>-1.811</td>
</tr>
<tr>
<td>Reaction</td>
<td>E° (V)</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>$\text{U}^{3+} + 3e^- \leftrightarrow \text{U(s)}$</td>
<td>-1.66</td>
</tr>
<tr>
<td>$\text{Al}^{3+}(\text{aq}) + 3e^- \leftrightarrow \text{Al(s)}$</td>
<td>-1.676</td>
</tr>
<tr>
<td>$\text{SiF}_6^{2-} + 4e^- \leftrightarrow \text{Si(s)} + 6\text{F}^-$</td>
<td>-1.37</td>
</tr>
<tr>
<td>$\text{Zn(CN)}_4^{2-} + 2e^- \leftrightarrow \text{Zn(s)} + 4\text{CN}$</td>
<td>-1.34</td>
</tr>
<tr>
<td>$\text{Zn(OH)}_4^{2-} + 2e^- \leftrightarrow \text{Zn(s)} + 4\text{OH}^-$</td>
<td>-1.285</td>
</tr>
<tr>
<td>$\text{Mn}^{2+} + 2e^- \leftrightarrow \text{Mn(s)}$</td>
<td>-1.17</td>
</tr>
<tr>
<td>$\text{V}^{2+} + 2e^- \leftrightarrow \text{V(s)}$</td>
<td>-1.13</td>
</tr>
<tr>
<td>$\text{SiO}_2(\text{s}) + 4\text{H}^+ + 4e^- \leftrightarrow \text{Si}(\text{s}) + 2\text{H}_2\text{O(ℓ)}$</td>
<td>-0.909</td>
</tr>
<tr>
<td>$\text{SO}_4^{2-} + \text{H}_2\text{O(ℓ)} + 2e^- \leftrightarrow \text{SO}_3^{2-} + 2\text{OH}^-$</td>
<td>-0.936</td>
</tr>
<tr>
<td>$\text{Cr}^{2+} + 2e^- \leftrightarrow \text{Cr(s)}$</td>
<td>-0.90</td>
</tr>
<tr>
<td>$\text{B(OH)}_3 + 3\text{H}^+ + 3e^- \leftrightarrow \text{B(s)} + 3\text{H}_2\text{O(ℓ)}$</td>
<td>-0.890</td>
</tr>
<tr>
<td>$2\text{H}_2\text{O(ℓ)} + 2e^- \leftrightarrow \text{H}_2(\text{g}) + 2\text{OH}^-(\text{aq})$</td>
<td>-0.828</td>
</tr>
<tr>
<td>$\text{Zn}^{2+}(\text{aq}) + 2e^- \leftrightarrow \text{Zn(s)}$</td>
<td>-0.7618</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\text{Co(OH)}_2(s) + 2e^- & \rightleftharpoons \text{Co(s)} + 2\text{OH}^- & -0.746 \\
\text{Cr}^{3+}(aq) + 3e^- & \rightleftharpoons \text{Cr(s)} & -0.424 \\
\text{Ni(OH)}_2 + 2e^- & \rightleftharpoons \text{Ni(s)} + 2\text{OH}^- & -0.72 \\
\text{Ag}_2\text{S}(s) + 2e^- & \rightleftharpoons 2\text{Ag(s)} + \text{S}^{2-} & -0.71 \\
\text{Se}(s) + 2e^- & \rightleftharpoons \text{Se}^{2-} & -0.67 \text{ in 1 M NaOH} \\
\text{Cd(NH}_3\text{)}_4^{2+} + 2e^- & \rightleftharpoons \text{Cd(s)} + 4\text{NH}_3 & -0.622 \\
2\text{SO}_3^{2-} + 3\text{H}_2\text{O(l)} + 4e^- & \rightleftharpoons \text{S}_2\text{O}_3^{2-} + 6\text{OH}^- & -0.576 \text{ in 1 M NaOH} \\
\text{U}^{4+} + e^- & \rightleftharpoons \text{U}^{3+} & -0.52 \\
\text{SiO}_2(s) + 8\text{H}^+ + 8e^- & \rightleftharpoons \text{SiH}_4(g) + 2\text{H}_2\text{O(l)} & -0.516 \\
\text{Sb} + 3\text{H}^+ + 3e^- & \rightleftharpoons \text{SbH}_3(g) & -0.510 \\
\text{H}_3\text{PO}_3+ 2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_3\text{PO}_2 + \text{H}_2\text{O(l)} & -0.50 \\
\text{Ni(NH}_3\text{)}_6^{2+} + 2e^- & \rightleftharpoons \text{Ni(s)} + 6\text{NH}_3 & -0.49 \\
2\text{CO}_2(g) + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_2\text{C}_2\text{O}_4 & -0.481 \\
\text{Cr}^{3+} + e^- & \rightleftharpoons \text{Cr}^{2+} & -0.424 \\
\text{Fe}^{2+}(aq) + 2e^- & \rightleftharpoons \text{Fe(s)} & -0.44 \\
\text{S(s)} + 2e^- & \rightleftharpoons \text{S}^{2-} & -0.407
\end{align*}
\]
\[
\begin{align*}
\text{Cd}^{2+}(aq) + 2e^- & \rightleftharpoons \text{Cd(s)} & -0.4030 \\
\text{Ag(NH}_3\text{)}_2^+ + e^- & \rightleftharpoons \text{Ag(s)} + 2\text{NH}_3 & -0.373 \\
\text{Ti}^{3+} + e^- & \rightleftharpoons \text{Ti}^{2+} & -0.37 \\
\text{PbSO}_4(s) + 2e^- & \rightleftharpoons \text{Pb(s)} + \text{SO}_4^{2-} & -0.356 \\
\text{Co}^{2+}(aq) + 2e^- & \rightleftharpoons \text{Co(s)} & -0.277 \\
2\text{SO}_4^{2-} + 4\text{H}^+ + 2e^- & \rightleftharpoons \text{S}_2\text{O}_6^{2-} + 2\text{H}_2\text{O(l)} & -0.25 \\
\text{N}_2(g) + 5\text{H}^+ + 4e^- & \rightleftharpoons \text{N}_2\text{H}_5^+ & -0.23 \\
\text{H}_3\text{PO}_4 + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_3\text{PO}_3 + \text{H}_2\text{O(l)} & -0.28 \\
\text{Ni}^{2+}(aq) + 2e^- & \rightleftharpoons \text{Ni(s)} & -0.257 \\
\text{V}^{3+} + e^- & \rightleftharpoons \text{V}^{2+} & -0.255 \\
\text{As} + 3\text{H}^+ + 3e^- & \rightleftharpoons \text{AsH}_3(g) & -0.225 \\
\text{CO}_2(g) + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{HCO}_2\text{H} & -0.20 \\
\text{Mo}^{3+} + 3e^- & \rightleftharpoons \text{Mo(s)} & -0.2 \\
\text{Sn}^{2+} + 2e^- & \rightleftharpoons \text{Sn(s)} & -0.19 \text{ in 1 M HCl} \\
\text{Ti}^{2+} + 2e^- & \rightleftharpoons \text{Ti(s)} & -0.163 \\
\text{MoO}_2(s) + 4\text{H}^+ + 4e^- & \rightleftharpoons \text{Mo(s)} + 2\text{H}_2\text{O(l)} & -0.152 \\
\text{AgI(s)} + e^- & \rightleftharpoons \text{Ag(s)} + \text{I}^- & -0.152
\end{align*}
\]
\[
\begin{align*}
\text{Sn}^{2+}(aq) + 2e^- & \rightleftharpoons \text{Sn}(s) \quad -0.14 \\
\text{Pb}^{2+}(aq) + 2e^- & \rightleftharpoons \text{Pb}(s) \quad -0.126 \\
\text{CrO}_4^{2-} + 4\text{H}_2\text{O}(l) + 3e^- & \rightleftharpoons 2\text{Cr(OH)}_4^- + 4\text{OH}^- \\[-0.13 \text{ in 1 M NaOH}]
\text{WO}_2(s) + 4\text{H}^+ + 4e^- & \rightleftharpoons \text{W}(s) + 2\text{H}_2\text{O}(l) \quad -0.119 \\
\text{Se}(s) + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_2\text{Se}(g) \quad -0.115 \\
\text{CO}_2(g) + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{CO}(g) + \text{H}_2\text{O}(l) \quad -0.106 \\
\text{WO}_3(s) + 6\text{H}^+ + 6e^- & \rightleftharpoons \text{W}(s) + 3\text{H}_2\text{O}(l) \quad -0.090 \\
\text{Hg}_2\text{I}_2(s) + 2e^- & \rightleftharpoons 2\text{Hg}(l) + 2\text{I}^- \quad -0.0405 \\
\text{Fe}^{3+}(aq) + 3e^- & \rightleftharpoons \text{Fe}(s) \quad -0.037 \\
2\text{H}^+(aq) + 2e^- & \rightleftharpoons \text{H}_2(g) \quad 0.00 \\
\text{P}(s,\text{white}) + 3\text{H}^+ + 3e^- & \rightleftharpoons \text{PH}_3(g) \quad 0.06 \\
\text{AgBr}(s) + e^- & \rightleftharpoons \text{Ag}(s) + \text{Br}^- \quad 0.071 \\
\text{S}_4\text{O}_6^{2-} + 2e^- & \rightleftharpoons 2\text{S}_2\text{O}_3^{2-} \quad 0.080 \\
\text{Co(NH}_3\text{)}_6^{3+} + e^- & \rightleftharpoons \text{Co(NH}_3\text{)}_6^{2+} \quad 0.1 \\
\text{Ru(NH}_3\text{)}_6^{3+} + e^- & \rightleftharpoons \text{Ru(s)} + \text{Ru(NH}_3\text{)}_6^{2+} \quad 0.10 \\
\text{S}(s) + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_2\text{S} \quad 0.144 \\
\text{Sn}^{4+}(aq) + 2e^- & \rightleftharpoons \text{Sn}^{2+}(aq) \quad 0.154
\end{align*}
\]
\[
\begin{align*}
 \text{Cu}^{2+}(aq) + e^- & \rightleftharpoons \text{Cu}^+(aq) & 0.159 \\
 \text{UO}_2^{2+} + e^- & \rightleftharpoons \text{UO}_2^+ & 0.16 \\
 \text{Co(OH)}_3(s) + e^- & \rightleftharpoons \text{Co(OH)}_2(s) + \text{OH}^- & 0.17 \\
 \text{ClO}_4^-(aq) + \text{H}_2\text{O}(l) + 2e^- & \rightleftharpoons \text{ClO}_3^-(aq) + 2\text{OH}^-(aq) & 0.17 \\
 \text{SO}_4^{2-} + 4\text{H}^+ + 2e^- & \rightleftharpoons \text{H}_2\text{SO}_3^{2-} + \text{H}_2\text{O}(l) & 0.172 \\
 \text{BiCl}_4^- + 3e^- & \rightleftharpoons \text{Bi}(s) + 4\text{Cl}^- & 0.199 \\
 \text{SbO}^+ + 2\text{H}^+ + 3e^- & \rightleftharpoons \text{Sb}(s) + \text{H}_2\text{O}(l) & 0.212 \\
 \text{AgCl}(s) + e^- & \rightleftharpoons \text{Ag}(s) + \text{Cl}^-\text{(aq)} & 0.2223 \\
 \text{HCHO} + 2\text{H}^+ + 2e^- & \rightleftharpoons \text{CH}_3\text{OH} & 0.2323 \\
 \text{HAsO}_2 + 3\text{H}^+ + 3e^- & \rightleftharpoons \text{As}(s) + 2\text{H}_2\text{O}(l) & 0.240 \\
 \text{Ru}^{3+} + e^- & \rightleftharpoons \text{Ru}^{2+} & 0.249 \\
 \text{IO}_3^- + 3\text{H}_2\text{O}(l) + 6e^- & \rightleftharpoons \text{I}^- + 6\text{OH}^- & 0.257 \\
 \text{Hg}_2\text{Cl}_2(s) + 2e^- & \rightleftharpoons 2\text{Hg}(l) + 2\text{Cl}^- & 0.2682 \\
 \text{UO}_2^{2+} + 4\text{H}^+ + e^- & \rightleftharpoons \text{U}^{4+} + 2\text{H}_2\text{O}(l) & 0.27 \\
 \text{Bi}^{3+} + 3e^- & \rightleftharpoons \text{Bi}(s) & 0.317 \\
 \text{UO}_2^{2+} + 4\text{H}^+ + 2e^- & \rightleftharpoons \text{U}^{4+} + 2\text{H}_2\text{O}(l) & 0.327 \\
 \text{VO}^{2+} + 2\text{H}^+ + e^- & \rightleftharpoons \text{V}^{3+} + \text{H}_2\text{O}(l) & 0.337
\end{align*}
\]
\[
\begin{align*}
\text{Cu}^{2+}(aq) + 2e^- \rightleftharpoons \text{Cu(s)} & \quad 0.3419 \\
\text{ClO}_3^-(aq) + \text{H}_2\text{O}(l) + 2e^- \rightleftharpoons \text{ClO}_2^-(aq) + 2\text{OH}^-(aq) & \quad 0.35 \\
\text{Fe(CN)}_6^{3-} + e^- \rightleftharpoons \text{Fe(CN)}_6^{4-} & \quad 0.356 \\
\text{O}_2(g) + 2\text{H}_2\text{O}(l) + 4e^- \rightleftharpoons 4\text{OH}^- & \quad 0.401 \\
\text{ClO}^- + \text{H}_2\text{O}(l) + e^- \rightleftharpoons \frac{1}{2}\text{Cl}_2(g) + 2\text{OH}^- & \quad 0.421 \text{ in } 1 \text{ M } \text{NaOH} \\
\text{Ag}_2\text{C}_2\text{O}_4(s) + 2e^- \rightleftharpoons 2\text{Ag(s)} + \text{C}_2\text{O}_4^{2-} & \quad 0.47 \\
\text{Cu}^+(aq) + e^- \rightleftharpoons \text{Cu(s)} & \quad 0.52 \\
\text{I}_2(s) + 2e^- \rightleftharpoons 2\text{I}^- & \quad 0.5355 \\
\text{I}_3^- + 2e^- \rightleftharpoons 3\text{I}^- & \quad 0.536 \\
\text{Ga}^{3+} + 3e^- \rightleftharpoons \text{Ga(s)} & \quad -0.56 \\
\text{Cu}^{2+} + \text{Cl}^- + e^- \rightleftharpoons \text{CuCl(s)} & \quad 0.559 \\
\text{S}_2\text{O}_6^{2-} + 4\text{H}^+ + 2e^- \rightleftharpoons 2\text{H}_2\text{SO}_3 & \quad 0.569 \\
\text{H}_3\text{AsO}_4 + 2\text{H}^+ + 2e^- \rightleftharpoons \text{HAsO}_2 + 2\text{H}_2\text{O(l)} & \quad 0.560 \\
\text{ClO}_2^-(aq) + \text{H}_2\text{O}(l) + 2e^- \rightleftharpoons \text{ClO}^-(aq) + 2\text{OH}^- & \quad 0.59 \\
\text{MnO}_4^- + 2\text{H}_2\text{O}(l) + 3e^- \rightleftharpoons \text{MnO}_2(s) + 4\text{OH}^- & \quad 0.60 \\
\text{Sb}_2\text{O}_5(s) + 6\text{H}^+ + 4e^- \rightleftharpoons 2\text{SbO}^+ + 3\text{H}_2\text{O(l)} & \quad 0.605 \\
\text{PtCl}_6^{2-} + 2e^- \rightleftharpoons \text{PtCl}_4^{2-} + 2\text{Cl}^- & \quad 0.68
\end{align*}
\]
RuO₂(s) + 4H⁺ + 4e⁻ ⇌ Ru(s) + 2H₂O(l)

O₂(g) + 2H₂ + 2e⁻ ⇌ H₂O₂

PtCl₄²⁻ + 2e⁻ ⇌ Pt(s) + 4Cl⁻

H₂SeO₃ + 4H⁺ + 4e⁻ ⇌ Se(s) + 3H₂O(l)

Ti³⁺ + 3e⁻ ⇌ Ti(s)

Fe³⁺(aq) + e⁻ ⇌ Fe²⁺(aq)

Hg₂²⁺(aq) + 2e⁻ ⇌ 2Hg(l)

Ag⁺(aq) + e⁻ ⇌ Ag(s)

Hg²⁺(aq) + 2e⁻ ⇌ Hg(l)

Cu²⁺ + I⁻ + e⁻ ⇌ CuI(s)

Ru(CN)₆³⁻ + e⁻ ⇌ Ru(s) + Ru(CN)₆⁴⁻

ClO⁻ + H₂O(l) + 2e⁻ ⇌ Cl⁻ + 2OH⁻

2Hg²⁺(aq) + 2e⁻ ⇌ Hg₂²⁺(aq)

HgO(s) + 2H⁺ + 2e⁻ ⇌ Hg(l) + H₂O(l)

NO₃⁻ + 3H⁺ + 2e⁻ ⇌ HNO₂ + H₂O(l)

MnO₂(s) + 4H⁺ + e⁻ ⇌ Mn³⁺(aq) + H₂O(l)

NO₃⁻(aq) + 4H⁺(aq) + 3e⁻ ⇌ NO(g) + 2H₂O(l)

HIO + H⁺ + 2e⁻ ⇌ I⁻ + H₂O(l)
HNO$_2$ + H$^+$ + e$^-$ \(\rightleftharpoons\) NO(g) + H$_2$O(l) \[0.996\]

VO$_2^{2+}$ + 2H$^+$ + e$^-$ \(\rightleftharpoons\) VO$^{2+}$ + H$_2$O(l) \[1.000\]

AuCl$_4^{-}$ + 3e$^-$ \(\rightleftharpoons\) Au(s) + 4Cl$^-$ \[1.002\]

NO$_2$ (g) + H$^+$ (aq) + e$^-$ \(\rightleftharpoons\) HNO$_2$ (aq) \[1.07\]

Br$_2$ (l) + 2e$^-$ \(\rightleftharpoons\) 2Br$^-$ (aq) \[1.087\]

Fe(phen)$_6^{3+}$ + e$^-$ \(\rightleftharpoons\) Fe(phen)$_6^{2+}$ \[1.147\]

SeO$_4^{3-}$ + 4H$^+$ + e$^-$ \(\rightleftharpoons\) H$_2$SeO$_3$ + H$_2$O(l) \[1.151\]

ClO$_3^{-}$ + 2H$^+$ + e$^-$ \(\rightleftharpoons\) ClO$_2$(g) + H$_2$O \[1.175\]

ClO$_3^{-}$ + 3H$^+$ + 2e$^-$ \(\rightleftharpoons\) HClO$_2$ + H$_2$O \[1.181\]

IO$_3^{-}$ + 6H$^+$ + 5e$^-$ \(\rightleftharpoons\) ½I$_2$(s) + 3H$_2$O(l) \[1.195\]

Pt$^{2+}$ + 2e$^-$ \(\rightleftharpoons\) Pt(s) \[1.2\]

ClO$_4^{-}$ + 2H$^+$ + 2e$^-$ \(\rightleftharpoons\) ClO$_3^{-}$ + H$_2$O \[1.201\]

O$_2$(g) + 4H$^+$ (aq) + 4e$^-$ \(\rightleftharpoons\) 2H$_2$O(l) \[1.229\]

MnO$_2$(s) + 4H$^+$ + 2e$^-$ \(\rightleftharpoons\) Mn$^{2+}$ + 2H$_2$O(l) \[1.23\]

Tl$^{3+}$ + 2e$^-$ \(\rightleftharpoons\) Tl$^+$ \[0.77 \text{ in } 1 \text{ M HCl}\]

2HNO$_2$ + 4H$^+$ + 4e$^-$ \(\rightleftharpoons\) N$_2$O(g) + 3H$_2$O(l) \[1.297\]
\[
\begin{align*}
\text{HOBr} + H^+ + 2e^- & \rightleftharpoons \frac{1}{2}\text{Br}^- + H_2O(l) \\
\text{Cr}_2\text{O}_7^{2-}(aq) + 14H^+(aq) + 6e^- & \rightleftharpoons 2\text{Cr}^{3+}(aq) + 7H_2O(l) \\
\text{Cr}_2\text{O}_7^{2-} + 14H^+ + 6e^- & \rightleftharpoons 2\text{Cr}^{3+} + 7H_2O(l) \\
\text{Cl}_2(g) + 2e^- & \rightleftharpoons 2\text{Cl}^-(aq) \\
\text{Au}^{3+} + 2e^- & \rightleftharpoons \text{Au}^+ \\
\text{Hg}_2\text{Br}_2(s) + 2e^- & \rightleftharpoons 2\text{Hg}(l) + 2\text{Br}^- \\
\text{Ce}^{4+}(aq) + e^- & \rightleftharpoons \text{Ce}^{3+}(aq) \\
\text{PbO}_2(s) + 4H^+ + 2e^- & \rightleftharpoons \text{Pb}^{2+}(aq) + 2H_2O(l) \\
\text{BrO}_3^- + 6H^+ + 6e^- & \rightleftharpoons \text{Br}^- + 3H_2O \\
\text{Mn}^{3+} + e^- & \rightleftharpoons \text{Mn}^{2+} \\
\text{MnO}_4^-(aq) + 8H^+(aq) + 5e^- & \rightleftharpoons \text{Mn}^{2+}(aq) + 4H_2O(l) \\
\text{BrO}_3^- + 6H^+ + 5e^- & \rightleftharpoons \frac{1}{2}\text{Br}_2(l) + 3H_2O \\
\text{Au}^{3+} + 3e^- & \rightleftharpoons \text{Au}(s) \\
2\text{NO}(g) + 2H^+ + 2e^- & \rightleftharpoons \text{N}_2\text{O}(g) + H_2O(l) \\
\text{HOBr} + H^+ + e^- & \rightleftharpoons \frac{1}{2}\text{Br}^- + H_2O(l) \\
\text{HClO}_2 + 2H^+ + 2e^- & \rightleftharpoons \text{HOCl} + H_2O \\
\text{PbO}_2(s) + 4\text{SO}_4^{2-} + 4H^+ + 2e^- & \rightleftharpoons \text{PbSO}_4(s) + \end{align*}
\]
\[\text{MnO}_4^- + 4H^+ + 3e^- \rightleftharpoons \text{MnO}_2(s) + 2H_2O(l) \] 1.70

\[\text{Ce}^{4+} + e^- \rightleftharpoons \text{Ce}^{3+} \] 1.72

\[\text{N}_2\text{O}(g) + 2H^+ + 2e^- \rightleftharpoons \text{N}_2(g) + \text{H}_2\text{O}(l) \] 1.77

\[\text{H}_2\text{O}_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2\text{H}_2\text{O}(l) \] 1.763

\[\text{Au}^+ + e^- \rightleftharpoons \text{Au}(s) \] 1.83

\[\text{Co}^{3+}(aq) + e^- \rightleftharpoons \text{Co}^{2+}(aq) \] 1.92

\[\text{S}_2\text{O}_8^{2-} + 2e^- \rightleftharpoons 2\text{SO}_4^{2-} \] 1.96

\[\text{O}_3(g) + 2H^+(aq) + 2e^- \rightleftharpoons \text{O}_2(g) + \text{H}_2\text{O}(l) \] 2.07

\[\text{BaO}(s) + 2H^+ + 2e^- \rightleftharpoons \text{Ba}(s) + \text{H}_2\text{O}(l) \] 2.365

\[\text{F}_2(g) + 2e^- \rightleftharpoons 2\text{F}^-(aq) \] 2.87

\[\text{F}_2(g) + 2H^+ + 2e^- \rightleftharpoons 2\text{HF} \] 3.053

Contributors

- David Harvey (DePauw University)