Learning Objectives

- To calculate the energy changes that accompany phase changes.

We take advantage of changes between the gas, liquid, and solid states to cool a drink with ice cubes (solid to liquid), cool our bodies by perspiration (liquid to gas), and cool food inside a refrigerator (gas to liquid and vice versa). We use dry ice, which is solid CO$_2$, as a refrigerant (solid to gas), and we make artificial snow for skiing and snowboarding by transforming a liquid to a solid. In this section, we examine what happens when any of the three forms of matter is converted to either of the other two. These changes of state are often called phase changes. The six most common phase changes are shown in Figure \(\PageIndex{1}\).

![Phase Changes Diagram]

Energy Changes That Accompany Phase Changes

Phase changes are *always* accompanied by a change in the energy of a system. For example, converting a liquid, in which the molecules are close together, to a gas, in which the molecules are, on average, far apart, requires an input of energy (heat) to give the molecules enough kinetic energy to allow them to overcome the intermolecular attractive forces. The stronger the attractive forces, the more energy is needed to overcome them. Solids, which are highly ordered, have the strongest intermolecular interactions, whereas gases, which are very disordered, have the weakest. Thus any transition from a more ordered to a less ordered state (solid to liquid, liquid to gas, or solid to gas) requires an input of energy; it is *endothermic*. Conversely, any transition from a less ordered to a more ordered state (liquid to solid, gas to liquid, or gas to solid) releases energy; it is *exothermic*. The energy change associated with each common phase change is shown in Figure \(\PageIndex{1}\).

\[\Delta H \text{ is positive for any transition from a more ordered to a less ordered state and negative for a transition from a less ordered to a more ordered state.} \]

Previously, we defined the enthalpy changes associated with various chemical and physical processes. The melting points and molar enthalpies of fusion \(\Delta H_{\text{fus}}\), the energy required to convert from a solid to a liquid, a process known as fusion (or melting), as well as the normal boiling points and enthalpies of vaporization \(\Delta H_{\text{vap}}\) of
selected compounds are listed in Table \(\PageIndex{1}\).

Table \(\PageIndex{1}\): Melting and Boiling Points and Enthalpies of Fusion and Vaporization for Selected Substances. Values given under 1 atm. of external pressure.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Melting Point (°C)</th>
<th>(\Delta H_{\text{fus}}) (kJ/mol)</th>
<th>Boiling Point (°C)</th>
<th>(\Delta H_{\text{vap}}) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(_2)</td>
<td>-210.0</td>
<td>0.71</td>
<td>-195.8</td>
<td>5.6</td>
</tr>
<tr>
<td>HCl</td>
<td>-114.2</td>
<td>2.00</td>
<td>-85.1</td>
<td>16.2</td>
</tr>
<tr>
<td>Br(_2)</td>
<td>-7.2</td>
<td>10.6</td>
<td>58.8</td>
<td>30.0</td>
</tr>
<tr>
<td>CCl(_4)</td>
<td>-22.6</td>
<td>2.56</td>
<td>76.8</td>
<td>29.8</td>
</tr>
<tr>
<td>CH(_3)CH(_2)OH (ethanol)</td>
<td>-114.1</td>
<td>4.93</td>
<td>78.3</td>
<td>38.6</td>
</tr>
<tr>
<td>CH(_3)(CH(_2))(_4)CH(_3) (n-hexane)</td>
<td>-95.4</td>
<td>13.1</td>
<td>68.7</td>
<td>28.9</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>0</td>
<td>6.01</td>
<td>100</td>
<td>40.7</td>
</tr>
<tr>
<td>Na</td>
<td>97.8</td>
<td>2.6</td>
<td>883</td>
<td>97.4</td>
</tr>
<tr>
<td>NaF</td>
<td>996</td>
<td>33.4</td>
<td>1704</td>
<td>176.1</td>
</tr>
</tbody>
</table>

The substances with the highest melting points usually have the highest enthalpies of fusion; they tend to be ionic compounds that are held together by very strong electrostatic interactions. Substances with high boiling points are those with strong intermolecular interactions that must be overcome to convert a liquid to a gas, resulting in high enthalpies of vaporization. The enthalpy of vaporization of a given substance is much greater than its enthalpy of fusion because it takes more energy to completely separate molecules (conversion from a liquid to a gas) than to enable them only to move past one another freely (conversion from a solid to a liquid).

Less energy is needed to allow molecules to move past each other than to separate them totally.
The direct conversion of a solid to a gas, without an intervening liquid phase, is called sublimation. The amount of energy required to sublime 1 mol of a pure solid is the enthalpy of sublimation (ΔH_{sub}). Common substances that sublime at standard temperature and pressure (STP; 0°C, 1 atm) include CO$_2$ (dry ice); iodine (Figure \(\PageIndex{2}\)); naphthalene, a substance used to protect woolen clothing against moths; and 1,4-dichlorobenzene. As shown in Figure \(\PageIndex{1}\), the enthalpy of sublimation of a substance is the sum of its enthalpies of fusion and vaporization provided all values are at the same T; this is an application of Hess’s law.

\[
\Delta H_{\text{sub}} = \Delta H_{\text{fus}} + \Delta H_{\text{vap}} \label{Eq1}
\]

Fusion, vaporization, and sublimation are endothermic processes; they occur only with the absorption of heat. Anyone who has ever stepped out of a swimming pool on a cool, breezy day has felt the heat loss that accompanies the evaporation of water from the skin. Our bodies use this same phenomenon to maintain a constant temperature: we perspire continuously, even when at rest, losing about 600 mL of water daily by evaporation from the skin. We also lose about 400 mL of water as water vapor in the air we exhale, which also contributes to cooling. Refrigerators and air-conditioners operate on a similar principle: heat is absorbed from the object or area to be cooled and used to vaporize a low-boiling-point liquid, such as ammonia or the chlorofluorocarbons (CFCs) and the hydrofluorocarbons (HCFCs). The vapor is then transported to a different location and compressed, thus releasing and dissipating the heat. Likewise, ice cubes efficiently cool a drink not because of their low temperature but because heat is required to convert ice at 0°C to liquid water at 0°C.

Temperature Curves

The processes on the right side of Figure \(\PageIndex{1}\)—freezing, condensation, and deposition, which are the
reverse of fusion, sublimation, and vaporization—are exothermic. Thus heat pumps that use refrigerants are essentially air-conditioners running in reverse. Heat from the environment is used to vaporize the refrigerant, which is then condensed to a liquid in coils within a house to provide heat. The energy changes that occur during phase changes can be quantified by using a heating or cooling curve.

Heating Curves

Figure \(\PageIndex{3}\) shows a heating curve, a plot of temperature versus heating time, for a 75 g sample of water. The sample is initially ice at 1 atm and −23°C; as heat is added, the temperature of the ice increases linearly with time. The slope of the line depends on both the mass of the ice and the specific heat \(C_s\) of ice, which is the number of joules required to raise the temperature of 1 g of ice by 1°C. As the temperature of the ice increases, the water molecules in the ice crystal absorb more and more energy and vibrate more vigorously. At the melting point, they have enough kinetic energy to overcome attractive forces and move with respect to one another. As more heat is added, the temperature of the system does not increase further but remains constant at 0°C until all the ice has melted. Once all the ice has been converted to liquid water, the temperature of the water again begins to increase. Now, however, the temperature increases more slowly than before because the specific heat capacity of water is greater than that of ice. When the temperature of the water reaches 100°C, the water begins to boil. Here, too, the temperature remains constant at 100°C until all the water has been converted to steam. At this point, the temperature again begins to rise, but at a faster rate than seen in the other phases because the heat capacity of steam is less than that of ice or water.

Thus the temperature of a system does not change during a phase change. In this example, as long as even a tiny amount of ice is present, the temperature of the system remains at 0°C during the melting process, and as long as even a small amount of liquid water is present, the temperature of the system remains at 100°C during the boiling process. The rate at which heat is added does not affect the temperature of the ice/water or water/steam mixture because the added heat is being used exclusively to overcome the attractive forces that hold the more condensed phase together. Many cooks think that food will cook faster if the heat is turned up higher so that the water boils more rapidly. Instead, the pot of water will boil to dryness sooner, but the temperature of the water does not depend on how vigorously it boils.

The temperature of a sample does not change during a phase change.
If heat is added at a constant rate, as in Figure \(\text{Fig 3}\), then the length of the horizontal lines, which represents the time during which the temperature does not change, is directly proportional to the magnitude of the enthalpies associated with the phase changes. In Figure \(\text{Fig 3}\), the horizontal line at 100°C is much longer than the line at 0°C because the enthalpy of vaporization of water is several times greater than the enthalpy of fusion.

A superheated liquid is a sample of a liquid at the temperature and pressure at which it should be a gas. Superheated liquids are not stable; the liquid will eventually boil, sometimes violently. The phenomenon of superheating causes “bumping” when a liquid is heated in the laboratory. When a test tube containing water is heated over a Bunsen burner, for example, one portion of the liquid can easily become too hot. When the superheated liquid converts to a gas, it can push or “bump” the rest of the liquid out of the test tube. Placing a stirring rod or a small piece of ceramic (a “boiling chip”) in the test tube allows bubbles of vapor to form on the surface of the object so the liquid boils instead of becoming superheated. Superheating is the reason a liquid heated in a smooth cup in a microwave oven may not boil until the cup is moved, when the motion of the cup allows bubbles to form.

Cooling Curves

The cooling curve, a plot of temperature versus cooling time, in Figure \(\text{Fig 4}\) plots temperature versus time as a 75 g sample of steam, initially at 1 atm and 200°C, is cooled. Although we might expect the cooling curve to be the mirror image of the heating curve in Figure \(\text{Fig 3}\), the cooling curve is *not* an identical mirror image. As heat is removed from the steam, the temperature falls until it reaches 100°C. At this temperature, the steam begins to condense to liquid water. No further temperature change occurs until all the steam is converted to the liquid; then the temperature again decreases as the water is cooled. We might expect to reach another plateau at 0°C, where the water is converted to ice; in reality, however, this does not always occur. Instead, the temperature often drops below the freezing point for some time, as shown by the little dip in the cooling curve below 0°C. This region corresponds to an unstable form of the liquid, a supercooled liquid. If the liquid is allowed to stand, if cooling is continued, or if a small crystal of the solid phase is added (a seed crystal), the supercooled liquid will convert to a solid, sometimes quite suddenly. As the water freezes, the temperature increases slightly due to the heat evolved during the freezing process and then holds constant at the melting point as the rest of the water freezes. Subsequently, the temperature of the ice decreases again as more heat is removed from the system.

![Figure 4](image-url): A Cooling Curve for Water. This plot of temperature shows what happens to a 75 g sample of steam initially at 1 atm and 200°C as heat is removed at a constant rate: A–B: cooling steam; B–C: condensing steam; C–D: cooling liquid water to give a supercooled liquid; D–E: warming the liquid as it begins to freeze; E–F: freezing liquid water; F–G: cooling ice.
Supercooling effects have a huge impact on Earth's climate. For example, supercooling of water droplets in clouds can prevent the clouds from releasing precipitation over regions that are persistently arid as a result. Clouds consist of tiny droplets of water, which in principle should be dense enough to fall as rain. In fact, however, the droplets must aggregate to reach a certain size before they can fall to the ground. Usually a small particle (a nucleus) is required for the droplets to aggregate; the nucleus can be a dust particle, an ice crystal, or a particle of silver iodide dispersed in a cloud during seeding (a method of inducing rain). Unfortunately, the small droplets of water generally remain as a supercooled liquid down to about −10°C, rather than freezing into ice crystals that are more suitable nuclei for raindrop formation. One approach to producing rainfall from an existing cloud is to cool the water droplets so that they crystallize to provide nuclei around which raindrops can grow. This is best done by dispersing small granules of solid CO$_2$ (dry ice) into the cloud from an airplane. Solid CO$_2$ sublimes directly to the gas at pressures of 1 atm or lower, and the enthalpy of sublimation is substantial (25.3 kJ/mol). As the CO$_2$ sublimes, it absorbs heat from the cloud, often with the desired results.

Example \(\PageIndex{1}\): Cooling Tea

If a 50.0 g ice cube at 0.0°C is added to 500 mL of tea at 20.0°C, what is the temperature of the tea when the ice cube has just melted? Assume that no heat is transferred to or from the surroundings. The density of water (and iced tea) is 1.00 g/mL over the range 0°C–20°C, the specific heats of liquid water and ice are 4.184 J/(g°C) and 2.062 J/(g°C), respectively, and the enthalpy of fusion of ice is 6.01 kJ/mol.

Given: mass, volume, initial temperature, density, specific heats, and \(ΔH_{\text{fus}}\)

Asked for: final temperature

Strategy

Substitute the given values into the general equation relating heat gained (by the ice) to heat lost (by the tea) to obtain the final temperature of the mixture.

Solution

When two substances or objects at different temperatures are brought into contact, heat will flow from the warmer one to the cooler. The amount of heat that flows is given by

\[
q = mC_sΔT
\]

where \(q\) is heat, \(m\) is mass, \(C_s\) is the specific heat, and \(ΔT\) is the temperature change. Eventually, the temperatures of the two substances will become equal at a value somewhere between their initial temperatures. Calculating the temperature of iced tea after adding an ice cube is slightly more complicated. The general equation relating heat gained and heat lost is still valid, but in this case we also have to take into account the amount of heat required to melt the ice cube from ice at 0.0°C to liquid water at 0.0°C.

The amount of heat gained by the ice cube as it melts is determined by its enthalpy of fusion in kJ/mol:

\[
q = nΔH_{\text{fus}}
\]
For our 50.0 g ice cube:

\[
q_{\text{ice}} = 50.0 \text{ g} \cdot \frac{1 \text{ mol}}{18.02 \text{ g}} \cdot 6.01 \text{ kJ/mol} = 16.7 \text{ kJ} \]

Thus, when the ice cube has just melted, it has absorbed 16.7 kJ of heat from the tea. We can then substitute this value into the first equation to determine the change in temperature of the tea:

\[
q_{\text{tea}} = -16,700 \text{ J} = 500 \text{ mL} \cdot \frac{1.00 \text{ g}}{1 \text{ mL}} \cdot 4.184 \text{ J/(g•°C)} \cdot \Delta T
\]

\[
\Delta T = -7.98 \text{ °C} = T_f - T_i
\]

\[
T_f = 12.02 \text{ °C}
\]

This would be the temperature of the tea when the ice cube has just finished melting; however, this leaves the melted ice still at 0.0°C. We might more practically want to know what the final temperature of the mixture of tea will be once the melted ice has come to thermal equilibrium with the tea. To determine this, we can add one more step to the calculation by plugging in to the general equation relating heat gained and heat lost again:

\[
q_{\text{ice}} = -q_{\text{tea}}
\]

\[
q_{\text{ice}} = m_{\text{ice}}C_s\Delta T = 50.0 \text{ g} \cdot 4.184 \text{ J/(g•°C)} \cdot (T_f - 0.0°C) = 209.2 \text{ J/°C} \cdot T_f
\]

\[
q_{\text{tea}} = m_{\text{tea}}C_s\Delta T = 500 \text{ g} \cdot 4.184 \text{ J/(g•°C)} \cdot (T_f - 12.02°C) = 2092 \text{ J/°C} \cdot T_f - 25,150 \text{ J}
\]

\[
209.2 \text{ J/°C} \cdot T_f = -2092 \text{ J/°C} \cdot T_f + 25,150 \text{ J}
\]

\[
2301.2 \text{ J/°C} \cdot T_f = 25,150 \text{ J}
\]

\[
T_f = 10.9 \text{ °C}
\]

The final temperature is in between the initial temperatures of the tea (12.02 °C) and the melted ice (0.0°C), so this answer makes sense. In this example, the tea loses much more heat in melting the ice than in mixing with the cold water, showing the importance of accounting for the heat of phase changes!

Exercise \(\PageIndex{1}\): Death by Freezing

Suppose you are overtaken by a blizzard while ski touring and you take refuge in a tent. You are thirsty, but you forgot to bring liquid water. You have a choice of eating a few handfuls of snow (say 400 g) at −5.0°C immediately to quench your thirst or setting up your propane stove, melting the snow, and heating the water to body temperature before drinking it. You recall that the survival guide you leafed through at the hotel said something about not eating snow, but you cannot remember why—after all, it’s just frozen water. To understand the guide’s recommendation, calculate the amount of heat that your body will have to supply to bring 400 g of snow at −5.0°C to your body’s internal temperature of 37°C. Use the data in Example \(\PageIndex{1}\)

Answer

200 kJ (4.1 kJ to bring the ice from −5.0°C to 0.0°C, 133.6 kJ to melt the ice at 0.0°C, and 61.9 kJ to bring the water from 0.0°C to 37°C), which is energy that would not have been expended had you first melted the snow.
Summary

Fusion, vaporization, and sublimation are endothermic processes, whereas freezing, condensation, and deposition are exothermic processes. Changes of state are examples of phase changes, or phase transitions. All phase changes are accompanied by changes in the energy of a system. Changes from a more-ordered state to a less-ordered state (such as a liquid to a gas) are endothermic. Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always exothermic. The conversion of a solid to a liquid is called fusion (or melting). The energy required to melt 1 mol of a substance is its enthalpy of fusion (ΔH_{fus}). The energy change required to vaporize 1 mol of a substance is the enthalpy of vaporization (ΔH_{vap}). The direct conversion of a solid to a gas is sublimation. The amount of energy needed to sublime 1 mol of a substance is its enthalpy of sublimation (ΔH_{sub}) and is the sum of the enthalpies of fusion and vaporization. Plots of the temperature of a substance versus heat added or versus heating time at a constant rate of heating are called heating curves. Heating curves relate temperature changes to phase transitions. A superheated liquid, a liquid at a temperature and pressure at which it should be a gas, is not stable. A cooling curve is not exactly the reverse of the heating curve because many liquids do not freeze at the expected temperature. Instead, they form a supercooled liquid, a metastable liquid phase that exists below the normal melting point. Supercooled liquids usually crystallize on standing, or adding a seed crystal of the same or another substance can induce crystallization.