General Chemistry Textmap

A general chemistry Libretexts Textmap organized around the textbook

Chemistry: The Central Science

by Brown, LeMay, Busten, Murphy, and Woodward

1. **Chapter 1: Introduction: Matter and Measurement**
 1. **1.1: The Study of Chemistry**
 2. **1.2: Classification of Matter**
 3. **1.3: Properties of Matter**
 4. **1.4: Units of Measurement**
 5. **1.5: Uncertainty in Measurement**
 6. **1.6: Dimensional Analysis**
 7. **1.E: Matter and Measurement (Exercises)**
 8. **1.S: Matter and Measurement (Summary)**

• 2

1. **Chapter 2: Atoms, Molecules, and Ions**
 1. **2.1: The Atomic Theory of Matter**
 2. **2.2: The Discovery of Atomic Structure**
 3. **2.3: The Modern View of Atomic Structure**
 4. **2.4: Atomic Mass**
 5. **2.5: The Periodic Table**
 6. **2.6: Molecules and Molecular Compounds**
 7. **2.7: Ions and Ionic Compounds**
 8. **2.8: Naming Inorganic Compounds**
 9. **2.9: Some Simple Organic Compounds**
 10. **2.E: Atoms, Molecules, and Ions (Exercises)**
 11. **2.S: Atoms, Molecules, and Ions (Summary)**

• 3

1. **Chapter 3: Stoichiometry: Chemical Formulas and Equations**
 1. **3.1: Chemical Equations**
 2. **3.2: Some Simple Patterns of Chemical Reactivity**
 3. **3.3: Formula Masses**
 4. **3.4: Avogadro's Number and the Mole**
 5. **3.5: Empirical Formulas from Analysis**
 6. **3.6: Quantitative Information from Balanced Equations**
 7. **3.7: Limiting Reactants**
 8. **3.E: Stoichiometry (Exercises)**

10. 3.S: Stoichiometry (Summary)
 • 4
1. Chapter 4: Reactions in Aqueous Solution
2. 4.1: General Properties of Aqueous Solutions
3. 4.2: Precipitation Reactions
4. 4.3: Acid-Base Reactions
5. 4.4: Oxidation-Reduction Reactions
6. 4.5: Concentration of Solutions
7. 4.6: Solution Stoichiometry and Chemical Analysis
8. 4.E: Reactions in Aqueous Solution (Exercises)
9. 4.S: Reactions in Aqueous Solution (Summary)
 • 5
1. Chapter 5: Thermochemistry
2. 5.1: The Nature of Energy
3. 5.2: The First Law of Thermodynamics
4. 5.3: Enthalpy
5. 5.4: Enthalpy of Reaction
6. 5.5: Calorimetry
7. 5.6: Hess’s Law
8. 5.7: Enthalpies of Formation
9. 5.8: Foods and Fuels
10. 5.E: Thermochemistry (Exercises)
11. 5.S: Thermochemistry (Summary)
 • 6
1. Chapter 6: Electronic Structure of Atoms
2. 6.1: The Wave Nature of Light
3. 6.2: Quantized Energy and Photons
4. 6.3: Line Spectra and the Bohr Model
5. 6.4: The Wave Behavior of Matter
6. 6.5: Quantum Mechanics and Atomic Orbitals
7. 6.6: 3D Representation of Orbitals
8. 6.7: Many-Electron Atoms
9. 6.8: Electron Configurations
10. 6.9: Electron Configurations and the Periodic Table
11. 6.E: Electronic Structure of Atoms (Exercises)
12. 6.S: Electronic Structure of Atoms (Summary)
Chapter 7: Periodic Properties of the Elements

7.1: Development of the Periodic Table
7.2: Effective Nuclear Charge
7.3: Sizes of Atoms and Ions
7.4: Ionization Energy
7.5: Electron Affinities
7.6: Metals, Nonmetals, and Metalloids
7.7: Group Trends for the Active Metals
7.8: Group Trends for Selected Nonmetals
7.9: Periodic Properties of the Elements (Exercises)
7.10: Periodic Properties of the Elements (Summary)

Chapter 8: Basic Concepts of Chemical Bonding

8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
8.2: Ionic Bonding
8.3: Covalent Bonding
8.4: Bond Polarity and Electronegativity
8.5: Drawing Lewis Structures
8.6: Resonance Structures
8.7: Exceptions to the Octet Rule
8.8: Strength of Covalent Bonds
8.9: Basic Concepts of Chemical Bonding (Exercises)
8.10: Basic Concepts of Chemical Bonding (Summary)

Chapter 9: Molecular Geometry and Bonding Theories

9.1: Molecular Shapes
9.2: The VSEPR Model
9.3: Molecular Shape and Molecular Polarity
9.4: Covalent Bonding and Orbital Overlap
9.5: Hybrid Orbitals
9.6: Multiple Bonds
9.7: Molecular Orbitals
9.8: Second-Row Diatomic Molecules
9.9: Molecular Geometry and Bonding Theories (Exercises)
9.10: Molecular Geometry and Bonding Theories (Summary)
5. 19.4: Entropy Changes in Chemical Reactions
 6. 19.5: Gibbs Free Energy
 7. 19.6: Free Energy and Temperature
8. 19.7: Free Energy and the Equilibrium Constant
9. 19.E: Chemical Thermodynamics (Exercises)

20
1. Chapter 20: Electrochemistry
2. 20.1: Oxidation States & Redox Reactions
3. 20.2: Balanced Oxidation-Reduction Equations
 4. 20.3: Voltaic Cells
5. 20.4: Cell Potential Under Standard Conditions
6. 20.5: Gibbs Energy and Redox Reactions
7. 20.6: Cell Potential Under Nonstandard Conditions
 8. 20.7: Batteries and Fuel Cells
 9. 20.8: Corrosion
 10. 20.9: Electrolysis
11. 20.E: Electrochemistry (Exercises)

21
1. Chapter 21: Nuclear Chemistry
 2. 21.1: Radioactivity
 3. 21.2: Patterns of Nuclear Stability
 4. 21.3: Nuclear Transmutations
 5. 21.4: Rates of Radioactive Decay
 6. 21.6: Energy Changes in Nuclear Reactions
 7. 21.7: Nuclear Fission
 8. 21.8: Nuclear Fusion
 9. 21.9: Biological Effects of Radiation
 10. 21.E: Exercises
11. 21.S: Nuclear Chemistry (Summary)

22
1. Chapter 22: Chemistry of the Nonmetals
 2. 22.1: General Concepts: Periodic Trends and Reactions
 3. 22.2: Hydrogen
 4. 22.3: Group 18: Nobel Gases
 5. 22.4: Group 17: The Halogens
 6. 22.5: Oxygen
7. **22.6: The Other Group 16 Elements: S, Se, Te, and Po**
8. **22.7: Nitrogen**
9. **22.8: The Other Group 15 Elements: P, As, Sb, and Bi**
10. **22.9: Carbon**
11. **22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb**
12. **22.11: Boron**
13. **22.E: Chemistry of the Nonmetals (Exercises)**
14. **22.S: Chemistry of the Nonmetals (Summary)**

• 23

1. **Chapter 23: Metals and Metallurgy**
2. **23.1: Occurrence and Distribution of Metals**
 3. **23.2: Pyrometallurgy**
 4. **23.3: Hydrometallurgy**
 5. **23.4: Electrometallurgy**
 6. **23.5: Metallic Bonding**
 7. **23.6: Alloys**
 8. **23.7: Transition Metals**
9. **23.8: Chemistry of Selected Transition Metals**

• 24

1. **Chapter 24: Chemistry of Coordination Chemistry**
2. **24.1: Metal Complexes**
3. **24.2: Ligands with more than one Donor Atom**
4. **24.3: Nomenclature of Coordination Chemistry**
5. **24.4: Isomerization**
6. **24.5: Color and Magnetism**
7. **24.6: Crystal Field Theory**
8. **24.E: Chemistry of Coordination Chemistry (Exercises)**

• 25

1. **Chapter 25: Chemistry of Life: Organic and Biological Chemistry**
2. **25.1: General Characteristics of Organic Molecules**
3. **25.2: Introduction to Hydrocarbons**
4. **25.3: Alkanes**
5. **25.4: Unsaturated Hydrocarbons**
6. **25.5: Functional Groups**
7. **25.6: Compounds with a Carbonyl Group**
8. 25.7: Chirality in Organic Chemistry
9. 25.8: Introduction to Biochemistry
10. 25.9: Proteins
11. 25.10: Carbohydrates
12. 25.11: Nucleic Acids
13. 25.E: Organic and Biological Chemistry (Exercises)
14. 25.S: Organic and Biological Chemistry (Summary)

• Homework
1. 1.E: Matter and Measurement (Exercises)
2. 2.E: Atoms, Molecules, and Ions (Exercises)
3. 3.E: Stoichiometry (Exercises)
4. 4.E: Aqueous Reactions (Exercises)
5. 5.E: Thermochemistry (Exercises)
6. 6.E: Electronic Structure (Exercises)
7. 7.E: Periodic Trends (Exercises)
8. 8.E: Chemical Bonding Basics (Exercises)
9. 9.E: Bonding Theories (Exercises)
10. 10.E: Gases (Exercises)
11. 11.E: Liquids and Intermolecular Forces (Exercises)
13. 13.E: Properties of Solutions (Exercises)
15. 15.E: Chemical Equilibrium (Exercises)
16. 16.E: Acid–Base Equilibria (Exercises)
17. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
18. 18.E: Chemistry of the Environment (Exercises)
19. 19.E: Chemical Thermodynamics (Exercises)
20. 20.E: Electrochemistry (Exercises)
21. 21.E: Nuclear Chemistry (Exercises)
22. 22.E: Chemistry of the Nonmetals (Exercises)
23. 23.E: Metals and Metallurgy (Exercises)
24. 24.E: Chemistry of Coordination Chemistry (Exercises)
25. 25.E: Organic and Biological Chemistry (Exercises)

This Textmap is designed for the two-semester general chemistry course and has been developed to meet the scope and sequence of most general chemistry courses. The organization follows the textbook "Chemistry: the Central Science" by Brown et al., but the content differs in detail.
•
Front Matter

• 1: Introduction - Matter and Measurement

• 2: Atoms, Molecules, and Ions

• 3: Stoichiometry: Chemical Formulas and Equations
4: Reactions in Aqueous Solution

5: Thermochemistry

6: Electronic Structure of Atoms

7: Periodic Properties of the Elements
8: Basic Concepts of Chemical Bonding

9: Molecular Geometry and Bonding Theories

10: Gases

11: Liquids and Intermolecular Forces
12: Solids and Modern Materials

- 13: Properties of Solutions

- 14: Chemical Kinetics

- 15: Chemical Equilibrium
20: Electrochemistry

21: Nuclear Chemistry

22: Chemistry of the Nonmetals

24: Chemistry of Coordination Chemistry
25: Chemistry of Life: Organic and Biological Chemistry

- Back Matter