The main group (s- and p-block) elements are among the most diverse in the Periodic Table. Ranging from non-metallic gases (e.g., hydrogen and fluorine), through semi-metals (e.g., metalloids such as silicon) to highly reactive metals (e.g., sodium and potassium). The study of the main group elements is important for a number of reasons. On an academic level they exemplify the trends and predictions in structure and reactivity that are the key to the Periodic Table. They represent the diversity of inorganic chemistry, and the fundamental aspects of structure and bonding that are also present for the transition metal, lanthanide and actinide elements.

- Front Matter

- 1: General Concepts and Trends

 - 1.1: Fundamental Properties - Oxidation State
 - 1.2: Fundamental Properties - Ionization Energy
 - 1.3: Fundamental Properties - Electron Affinity
 - 1.4: Fundamental Properties - Electronegativity
 - 1.5: Structure and Bonding - Valence Shell Electron Pair Repulsion (VSEPR) Theory
 - 1.6: Structure and Bonding - Crystal Structure
 - 1.7: Structure and Bonding - Stereochemistry
 - 1.8: Acids, Bases, and Solvents - Choosing a Solvent
2: Hydrogen

- 2.1: Discovery of Hydrogen
- 2.2: The Physical Properties of Hydrogen
- 2.3: Synthesis of Molecular Hydrogen
- 2.4: Atomic Hydrogen
- 2.5: The Proton
- 2.6: Hydrides
- 2.7: The Hydrogen Bond
- 2.8: Isotopes of Hydrogen
- 2.9: Nuclear Fusion
- 2.10: Storage of Hydrogen for Use as a Fuel

3: Group 1 - The Alkali Metals

- 3.1: The Alkali Metal Elements
- 3.2: Compounds of the Alkali Metals
- 3.3: The Anomalous Chemistry of Lithium
- 3.4: Organolithium Compounds
• 4: Group 2 - The Alkaline Earth Metals

• 4.1: The Alkaline Earth Elements
• 4.2: Calcium the Archetypal Alkaline Earth Metal
• 4.3: Differences for Beryllium and Magnesium
• 4.4: Organometallic Compounds of Magnesium

• 5: Group 12

• 5.1: The Group 12 Elements
• 5.2: Cadmium Chalcogenide Nanoparticles
• 5.3: Organometallic Chemistry of Zinc
• 5.4: Organomercury Compounds
• 5.5: The Myth, Reality, and History of Mercury Toxicity

• 6: Group 13
6.1: The Group 13 Elements
6.2: Trends for the Group 13 Compounds
6.3: Borides
6.4: Boron Hydrides
6.5: Wade's Rules
6.6: Trends for the Oxides of the Group 13 Elements
6.7: Boron Oxides, Hydroxides, and Oxyanions
6.8: Aluminum Oxides, Hydroxides, and Hydrated Oxides
6.9: Ceramic Processing of Alumina
6.10: Boron Compounds with Nitrogen Donors
6.11: Properties of Gallium Arsenide
6.12: Electronic Grade Gallium Arsenide
6.13: Chalcogenides of Aluminum, Gallium, and Indium
6.14: Group 13 Halides

7: Group 14

7.1: The Group 14 Elements
7.2: Carbon Black- From Copying to Communication
7.3: Carbon Nanomaterials
7.4: Nitrogen Compounds of Carbon
7.5: Carbon Monoxide
7.6: Carbon Dioxide
7.7: Suboxides of Carbon
7.8: Carbon Halides
7.9: Comparison Between Silicon and Carbon
7.10: Semiconductor Grade Silicon
7.11: Oxidation of Silicon
7.12: Applications for Silica Thin Films
8: Group 15 - The Pnictogens

- 8.1: The Group 15 Elements- The Pnictogens
- 8.2: Reaction Chemistry of Nitrogen
- 8.3: Hydrides
- 8.4: Oxides and Oxoacids
- 8.5: Halides of Phosphorous

9: Group 16

- 9.1: The Group 16 Elements- The Chalcogens
- 9.2: Ozone
- 9.3: Water - The Fuel for the Medieval Industrial Revolution
- 9.4: Hydrogen Peroxide
- 9.5: Hydrogen Peroxide Providing a Lift for 007
- 9.6: Comparison of Sulfur to Oxygen
- 9.7: Chalconide Hydrides
- 9.8: Oxides and Oxyacids of Sulfur
- 9.9: Sulfur Halides
• 10: The Halogens

 ◦ 10.1: The Group 17 Elements- The Halogens
 ◦ 10.2: Compounds of Fluorine
 ◦ 10.3: Compounds of Chlorine
 ◦ 10.4: Oxyacids of Chlorine
 ◦ 10.5: Bromine Trifluoride as a Solvent

• 11: Group 18 - The Noble Gases

 ◦ 11.1: The Group 18 Elements- The Noble Gases

• Back Matter

 ◦ Index
 ◦ Index
 ◦ Glossary