The simple quantum-mechanical problem we have just solved can provide an instructive application to chemistry: the free-electron model (FEM) for delocalized π-electrons. The simplest case is the 1,3-butadiene molecule.

Figure 4) by

$$\rho = 2\psi_1^2 + 2\psi_2^2$$ \hspace{1cm} \text{(28)}

A chemical interpretation of this picture might be that, since the π-electron density is concentrated between carbon atoms 1 and 2, and between 3 and 4, the predominant structure of butadiene has double bonds between these two pairs of atoms. Each double bond consists of a π-bond, in addition to the underlying σ-bond. However, this is not the complete story, because we must also take account of the residual π-electron density between carbons 2 and 3. In the terminology of valence-bond theory, butadiene would be described as a resonance hybrid with the contributing structures $\text{CH}_2=\text{CH}-\text{CH}-\text{CH}_2$ (the predominant structure) and $\text{CH}_2=\text{CH}=\text{CH}-\text{CH}_2$ (a secondary contribution). The reality of the latter structure is suggested by the ability of butadiene to undergo 1,4-addition reactions.

The free-electron model can also be applied to the electronic spectrum of butadiene and other linear polyenes. The lowest unoccupied molecular orbital (LUMO) in butadiene corresponds to the $n=3$ particle-in-a-box state. Neglecting electron-electron interaction, the longest-wavelength (lowest-energy) electronic transition should occur from $n=2$, the highest occupied molecular orbital (HOMO).

The energy difference is given by

$$\Delta E = E_{3} - E_{2} = (3^2 - 2^2)\frac{\hbar^2}{8ml^2}$$ \hspace{1cm} \text{(29)}
Here m represents the mass of an electron (not a butadiene molecule!), 9.1×10^{-31} Kg, and L is the effective length of the box, $4 \times 1.40 \times 10^{-10}$ m. By the Bohr frequency condition

$$\Delta E = \hbar \nu = \frac{hc}{\lambda} \quad (\text{label}[30])$$

The wavelength is predicted to be 207 nm. This compares well with the experimental maximum of the first electronic absorption band, $\lambda_{\text{max}} \approx 210$ nm, in the ultraviolet region.

We might therefore be emboldened to apply the model to predict absorption spectra in higher polyenes $\text{CH}_2=(\text{CH}-\text{CH=})_{n\!-\!1}\text{CH}_2$. For the molecule with $2n$ carbon atoms (n double bonds), the HOMO \rightarrow LUMO transition corresponds to $n \rightarrow n + 1$, thus

$$\frac{hc}{\lambda} \approx \begin{bmatrix} (n+1)^2-n^2 \end{bmatrix} \frac{h^2}{8m(2nL_{\text{CC}})^2} \quad (\text{label}[31])$$

A useful constant in this computation is the Compton wavelength

$$\frac{h}{mc} = 2.426 \times 10^{-12} \text{ m}.$$

For $n=3$, hexatriene, the predicted wavelength is 332 nm, while experiment gives $\lambda_{\text{max}} \approx 250$ nm. For $n=4$, octatetraene, FEM predicts 460 nm, while $\lambda_{\text{max}} \approx 300$ nm. Clearly the model has been pushed beyond range of quantitative validity, although the trend of increasing absorption band wavelength with increasing n is correctly predicted. Incidentally, a compound should be colored if its absorption includes any part of the visible range 400-700 nm. Retinol (vitamin A), which contains a polyene chain with $n=5$, has a pale yellow color. This is its structure:

![Retinol Structure](image)

Contributors

Seymour Blinder (Professor Emeritus of Chemistry and Physics at the University of Michigan, Ann Arbor)