An *incommensurate composite crystal* is a compound with two or more \((N)\) subsystems that are themselves modulated structures, with basis structures that are mutually incommensurate. Each subsystem (numbered by \(\nu\)) has a reciprocal lattice for its basic structure with three basis vectors

\[a_i^{\nu} \]

. There is a basis of the vector module of diffraction spots that has at most \(3N\) basis vectors

\[A_j^* \]

such that

\[a_i^{\nu} = \sum_{j=1}^{3} Z_{ij}^\nu A_j^* \quad (i = 1, 2, 3), \]

where

\[Z_{ij}^\nu \]

are integer coefficients. If \(n\) is larger than the dimension of space (three), the composite crystal is an aperiodic crystal. \(n\) is the rank of the vector module.

Applications

Examples are intergrowth crystals and adsorbed monolayers. To the former belongs \(\text{Hg}_{3-\delta}\text{AsF}_6\) with two systems of Hg chains inside the host lattice formed by AsF\(_6\) octahedra. Another example is nonadecane in the channels of a urea host crystal.

Contributors

- [Online Dictionary of Crystallography](#)