Clinical chemistry is generally concerned with analysis of bodily fluids for diagnostic and therapeutic purposes. It is an applied form of biochemistry. This workbook is designed as a companion manual to the 4th edition of Clinical Chemistry: Theory, Analysis, Correlation by Kaplan and Pesce. It should be used as an integral part of a complete medical technology program. However, students of Clinical Chemistry will find that it is also a valuable study guide for preparing the certification examination. It allows the student to assess areas of weakness in basic facts, laboratory concepts, and clinical application, and to turn immediately to the necessary pages in Kaplan and Pesce for review.

• Back Matter

• Case Histories
 • Case History 1: Calculations
 • Case History 2: Laboratory Equipment
 • Case History 3: Sample Preparation
 • Case History 4: Spectrophotometry
 • Case History 5: Refractometry
 • Case History 6: Chromatography I
 • Case History 7: Radioisotopes
 • Case History 8: Liquid Scintillation Counting
 • Case History 9: Colligative Properties
 • Case History 10: Ion Selective Electrodes
 • Case History 11: Reference Intervals
 • Case History 12: Quality Control
 • Case History 13: Electrolytes
 • Case History 14: Blood Gases
 • Case History 15: Renal Disease, Creatinine Analysis
 • Case History 16: Liver Disease, Alkaline Phosphatase
 • Case History 17: Bone Disease, Alkaline Phosphatase Isoenzymes
 • Case History 18: Diabetes, Ketone Analysis
 • Case History 19: Alcohol
 • Case History 20: Toxicology
 • Case History 21: Sample Analysis I
 • Case History 22: Sample Analysis II
 • Case History 23: Phlebotomy
 • Case History 24: Chain Of Custody
 • Case History 25: Toxicology - Cyanide Poisoning
• Case History 26: Cardiac Isoenzymes
• Case History 27: Creatine Kinase (CK) Isoenzymes
• Case History 28: Tumor Markers
• Case History 29: Potassium
• Case History 30: Ammonia Analysis
• Case History 31: Toxicology (CO Poisoning)
• Case History 32: Spectrophotometry: ELISA Reader
• Case History 33: Enzyme Analysis
• Case History 34: Renal Function - Creatinine Clearance Calculation
• Case History 35: Amniotic Fluid Analysis - Fetal Maturity Studies
• Case History 36: Chromatography II
• Case History 37: Chromatography III
• Case History 38: Electrophoresis
• Case History 39: Immunochemistry
• Case History 40: Competitive Binding
• Case History 41: Methods Evaluation
• Case History 42: “Discrepant Results”
• Case History 43: Possible Sample Contamination
• Case History 44: “Quantity Not Sufficient - QNS”
• Case History 45: Cocaine Abuse
• Case History 46: Blood Gases
• Case History 47: Quality Control Advanced
• Case History 48: Sample Analysis III, Quantity Not Sufficient (QNS)
• Case History 49: Drugs of Abuse in Urine
• Case History 50: Glucosemeter Recall
• Case History 51: Glucosemeter Nonlinearity
• Case History 52: Discrepant Urinalysis Values

• Front Matter
 • TitlePage
 • InfoPage
 • Table of Contents

• Laboratory Exercises
 • Exercise 1: Basic Spectrophotometry
 • Exercise 2: Absorbance Spectra
• Exercise 3: Standard Curve
• Exercise 4: Buffer Preparation
• Exercise 5: Buffer Titration/buffering Capacity
• Exercise 6: Flame Photometer
• Exercise 7: Chloride Determination (Coulometric Method)
• Exercise 8: Electrolytes/anion Gap
• Exercise 9: Serum Osmolality
• Exercise 10: Serum Glucose: Trinder Method
• Exercise 11: Glucose Tolerance Test
• Exercise 12: Total Serum Protein
• Exercise 13: Serum Albumin (Bromcresol Green Method)
• Exercise 14: Serum Creatinine (Jaffe Method)
• Exercise 15: Bilirubin (Waters and Gerande – DMSO Method)
• Exercise 16: Cholesterol (Total and HDL)
• Exercise 17: Triglycerides
• Exercise 18: Lipoprotein Electrophoresis
• Exercise 19: Kinetic Enzyme Analysis
• Exercise 20: Enzymes Rate, Creatine Kinase (CK)
• Exercise 21: Amylase (Modified Caraway Method)
• Exercise 22: Creatine Kinase (CK) Isoenzyme Electrophoresis
• Exercise 23: Blood Gas Analysis
• Exercise 24: Phlebotomy
• Exercise 25: Quality Control
• Exercise 26: Extraction Technique
• Exercise 27: Thin Layer Chromatography (TLC) of Drugs
• Exercise 28: High Performance Liquid Chromatography (HPLC)
• Exercise 29: Gas Liquid Chromatography (GLC)
• Exercise 30: Radioimmunoassay (RIA)

• **Laboratory Exercises: Urinalysis**
 • Exercise 31: Protein in urine
 • Exercise 32: Glucose in urine
 • Exercise 33: Specific Gravity of Urine
 • Exercise 34: Red Cells or Hemoglobin in urine
 • Exercise 35: Nitrile in urine
 • Exercise 36: Leukocytes or Esterase in urine
Questions and Answers

- Chapter 1: Introductory Principles
- Chapter 2: Laboratory Management
- Chapter 3: Sources and Control of Preanalytical Variation
- Chapter 4: Spectral Techniques
- Chapters 5-7: Chromatography
- Chapter 8: Mass Spectrometry
- Chapter 9: Radioisotopes
- Chapter 10: Electrophoresis
- Chapters 11 and 12: Immunology and Immunochemistry
- Chapter 13: Competitive Binding Assays
- Chapter 14: Colligative Properties
- Chapter 15: Electrochemical Measurements
- Chapter 16: Automation
- Chapter 17: Point-of-care (Near-patient)
- Chapter 18: Laboratory Information Systems
- Chapters 19 and 20: Statistics and Reference Ranges
- Chapter 21: Quality Control
- Chapter 22: Evaluation of Methods
- Chapter 23: Interferences
- Chapter 24: Body Water and Electrolytes
- Chapter 25: Acid-base Control
- Chapter 26: Renal Function
- Chapter 27: Liver Disease
- Chapter 28: Bone Disease
- Chapter 29: The Pancreas: Function and Chemical Pathology
- Chapter 30: Gastrointestinal Function and Digestive Disease
- Chapter 31: Cardiac and Muscle Disease
- Chapter 32: Diabetes
- Chapter 33: Lipid Metabolism
- Chapter 34: Alcoholism
- Chapter 35: Iron, Bilirubin, Porphyrin
- Chapter 36: Hemoglobin
- Chapter 37: Human Nutrition
- Chapter 38: Trace Elements
- Chapter 39: Vitamins
- Chapter 40: Pregnancy and Fetal Function