• 1: Electronic Structure and Covalent Bonding

 ◦ 1.1: The Structure of an Atom
 ◦ 1.2: How Electrons in an Atom are Distributed
 ◦ 1.3: Ionic and Covalent Bonds
 ◦ 1.4: How the Structure of a Compound is Represented
 ◦ 1.5: Atomic Orbitals
 ◦ 1.6: How atoms form Covalent Bonds
 ◦ 1.7: How Single Bonds Are Formed in Organic Compounds
 ◦ 1.8: How a Double Bond is Formed: The Bonds in Ethene
 ◦ 1.9: How a Triple Bond is Formed: The Bonds in Ethyne
 ◦ 1.10: Bonding in the Methyl Cation, the Methyl Radical, and the Methyl Anion
 ◦ 1.11: The Bonds in Water
 ◦ 1.12: The Bonds in Ammonia and in the Ammonium Ion
 ◦ 1.13: The Bond in a Hydrogen Halide
 ◦ 1.14: Summary: Hybridization, Bond Lengths, Bond Strengths, and Bond Angles
 ◦ 1.15: The Dipole Moments of Molecules
 ◦ 1.16: An Introduction to Acids and Bases
 ◦ 1.17: pka and pH
 ◦ 1.18: Organic Acids and Bases
 ◦ 1.19: How to Predict the Outcome of an Acid-Base Reaction
 ◦ 1.20: How to Determine the Position of Equilibrium
 ◦ 1.21: How the Structure of an Acid Affects its pka Value
 ◦ 1.22: How Substituents Affect the Strength of an Acid
 ◦ 1.23: An Introduction to Delocalized Electrons
 ◦ 1.24: A Summary of the Factors that Determine Acid Strength
 ◦ 1.25: How pH Affects the Structure of an Organic Compound
 ◦ 1.26: Buffer Solutions
 ◦ 1.27: Lewis Acids and Bases

• 2: Acids and Bases

 ◦ No image available
2.1: An Introduction to Acids and Bases
- 2.2: pKa and pH
- 2.3: Organic Acids and Bases
- 2.4: How to Predict the Outcome of an Acid-Base Reaction
- 2.5: How to Determine the Position of Equilibrium
- 2.6: How the Structure of an Acid Affects its pKa Value
- 2.7: How pH Affects the Structure of an Organic Compound
- 2.8: Buffer Solutions
- 2.9: Lewis Acids and Bases

3: An Introduction to Organic Compounds: Nomenclature, Physical Properties, and Representation of Structure

- 3.1: How Alkyl Substituents Are Named
- 3.2: The Nomenclature of Alkanes
- 3.3: The Nomenclature of Cycloalkanes • Skeletal Structures
- 3.4: The Nomenclature of Alkyl Halides
- 3.5: The Structures of Alkyl Halides, Alcohols, Ethers, and Amines
- 3.6: The Physical Properties of Alkanes, Alkyl Halides, Alcohols, Ethers, and Amines
- 3.7: Rotation Occurs About Carbon-Carbon Single Bonds
- 3.8: Some Cycloalkanes Have Angle Strain
- 3.9: Conformers of Cyclohexane
- 3.10: Conformers of Monosubstituted Cyclohexanes
- 3.11: Conformers of Disubstituted Cyclohexanes
- 3.12: Fused Cyclohexane Rings

4: Alkenes: Structure, Nomenclature, and an Introduction to Reactivity

- 4.1: Molecular Formulas and the Degree of Unsaturation
- 4.2: The Nomenclature of Alkenes
- 4.3: The Structures of Alkenes
- 4.4: Alkenes Can Have Cis and Trans Isomers
- 4.5: Naming Alkenes Using the E,Z System
- 4.7: How Alkenes React (Curved Arrows Show the Flow of Electrons)
- 4.8: A Reaction Coordinate Diagram Describes the Energy Changes That Take Place During a Reaction
5: The Reactions of Alkenes and Alkynes: An Introduction to Multistep Synthesis

- 5.1: The Addition of a Hydrogen Halide to an Alkene
- 5.2: Carbocation Stability Depends on the Number of Alkyl Groups Attached to the Positively Charged Carbon
- 5.4: Electrophilic Addition Reactions Are Regioselective
- 5.4: The Addition of Water to an Alkene
- 5.5: The Addition of an Alcohol to an Alkene
- 5.7: The Nomenclature of Alkynes
- 5.8: The Structure of Alkynes
- 5.9: The Physical Properties of Unsaturated Hydrocarbons
- 5.10: The Addition of Hydrogen Halides and Addition of Halogens to an Alkyne
- 5.12: The Addition of Hydrogen to Alkenes and Alkynes
- 5.13: A Hydrogen Bonded to an sp Carbon is “Acidic”
- 5.14: Synthesis Using Acetylide Ions
- 5.15: An Introduction to Multistep Synthesis

6: Isomers and Stereochemistry

- 5.1: Cis-Trans Isomers Result from Restricted Rotation
- 5.2: A Chiral Object Has a Nonsuperimposable Mirror Image
- 5.3: An Asymmetric Center Is a Cause of Chirality in a Molecule
- 5.4: Isomers with One Asymmetric Center
- 5.5: Asymmetric Centers and Stereocenters
- 5.6: How to Draw Enantiomers
- 5.7: Naming Enantiomers by the R,S System
- 5.8: Chiral Compounds Are Optically Active
- 5.9: How Specific Rotation is Measured
- 5.10: Enantiomeric Excess
- 5.11: Isomers with More than One Asymmetric Center
- 5.12: Meso Compounds Have Asymmetric Centers but Are Optically Inactive
- 5.13: How to Name Isomers with More than One Asymmetric Center
- 5.14: Reactions of Compounds that Contain an Asymmetric Center
- 5.15: Using Reactions that Do Not Break Bonds to an Asymmetric Center to Determine Relative Configurations
- 5.16: How Enantiomers Can Be Separated
5.17: Nitrogen and Phosphorus Atoms Can Be Asymmetric Centers
5.18: Stereochemistry of Reactions: Regioselective, Stereoselective, and Stereospecific Reactions
5.19: The Stereochemistry of Electrophilic addition Reactions of Alkenes
5.20: The Stereochemistry of Enzyme-Catalyzed Reactions
5.21: Enantiomers Can Be Distinguished by Biological Molecules

7: Delocalized Electrons and Their Effect on Stability, Reactivity, and pKa (Ultraviolet and Visible Spectroscopy)

7.1: Delocalized Electrons Explain Benzene’s Structure
7.2: The Bonding in Benzene
7.3: Resonance Contributors and the Resonance Hybrid
7.4: How to Draw Resonance Contributors
7.5: The Predicted Stabilities of Resonance Contributors
7.6: Delocalized Energy Is the Additional Stability Delocalized Electrons Give to a Compound
7.7: Examples That Show How Delocalized Electrons Affect Stability
7.8: A Molecular Orbital Description of Stability
7.9: How Delocalized Electrons Affect pKa Values
7.10: Delocalized Electrons Can Affect the Product of a Reaction
7.11: Thermodynamic Versus Kinetic Control of Reactions
7.12: The Diels-Adler Reaction Is a 1,4-Addition Reaction

8: Aromaticity: Reactions of Benzene and Substituted Benzenes

8.1: The Two Criteria for Aromaticity
8.2: Applying the Criteria for Aromaticity
8.3: Aromatic Heterocyclic Compounds
8.4: The Nomenclature of Monosubstituted Benzenes
8.5: How Benzene Reacts
8.6: The General Mechanism for Electrophilic Aromatic Substitution Reactions
8.7: Halogenation of Benzene
8.8: Nitration of Benzene
8.9: Sulfonation of Benzene
8.10: The Friedel-Crafts Acylation of Benzene
8.11: The Friedel-Crafts Alkylation of Benzene
8.13: The Nomenclature of Disubstituted and Polysubstituted Benzenes
8.14: The Effect of Substituents on Reactivity
8.15: The Effect of Substituents on Orientation
8.17: The Effect of Substituents on pKa

9: Substitution and Elimination Reactions of Alkyl Halides

9.1: How Alkyl Halides React
9.2: The Mechanism For an \(S_N2\) Reaction
9.3: Factors That Affect \(S_N2\) Reactions
9.4: The Mechanism for an \(S_N1\) Reaction
9.5: Factors That Affect \(S_N1\) Reactions
9.6: Comparing the \(S_N2\) and \(S_N1\) Reactions of Alkyl Halides
9.7: Elimination Reaction of Alkyl Halides
9.8: Products of Elimination Reactions
9.9: Comparing the E2 and E1 Reactions of Alkyl Halides
9.10: Does an Alkyl Halide Undergo SN2, E2 Reactions or SN1 Reactions?
9.11: Does an Alkyl Halide Undergo SN2/E2 Reactions or SN1/E1 Reactions?
9.12: Solvent Effects
9.14: Biological Methylating Reagents

10: Reactions of Alcohols, Amines, Ethers, and Epoxides

10.1: Nomenclature of Alcohols
10.2: Substitution Reactions of Alcohols
10.3: Elimination Reactions of Alcohols: Dehydration
10.4: Oxidation of Alcohols
10.5: Amines Do Not Undergo Substitution or Elimination Reactions
10.6: Nomenclature of Ethers
10.7: Nucleophilic Substitution Reactions of Ethers
10.8: Nucleophilic Substitution Reactions of Epoxides
10.9: Using Carbocation Stability to Determine the Carcinogenicity of an Arene Oxide

11: Carbonyl Compounds I: Reactions of Carboxylic Acids and Carboxylic Derivatives
11.1: The Nomenclature of Carboxylic Acids and Carboxylic Acid Derivatives
- 11.2: The Structures of Carboxylic Acids and Carboxylic Acid Derivatives
- 11.3: The Physical Properties of Carbonyl Compounds
- 11.4: Carboxylic Acids and Carboxylic Acid Derivatives found in Nature
- 11.5: How Carboxylic Acids and Carboxylic Acids Compounds React
- 11.6: Relative Reactivities of Carboxylic Acids and Carboxylic Acid Derivatives
- 11.7: Reactions of Acyl Halides
- 11.8: Reactions of Esters
- 11.9: Acid-Catalyzed Ester Hydrolysis
- 11.10: Soaps, Detergents, and Micelles
- 11.11: Reactions of Carboxylic Acids
- 11.12: Reactions of Amides
- 11.13: Acid-Catalyzed Amide Hydrolysis
- 11.14: The Synthesis of Carboxylic Acid Derivatives
- 11.15: Nitriles

12: Carbonyl Compounds II: Reactions of Aldehydes and Ketones • More Reactions of Carboxylic Acid Derivatives
- 12.1: The Nomenclature of Aldehydes and Ketones
- 12.2: The Relative Reactivities of Carbonyl Compounds
- 12.3: How Aldehydes and Ketones React
- 12.4: Gringard Reagents
- 12.6: Reactions of Carbonyl Compounds with Hydride Ion
- 12.7: Reactions of Aldehydes and Ketones with Amines
- 12.8: Reactions of Aldehydes and Ketones with Water
- 12.9: Reactions of Aldehydes and Ketones with Alcohols
- 12.10: Nucleophilic Addition to α, β- Unsaturated Carboxylic Acid Derivatives
- 12.10: Nucleophilic Addition to α, β- Unsaturated Carbonyl Compounds
- 18.11 Protecting Groups
- 18.12 Addition of Sulfur Nucleophiles
- 18.13 The Wittig Reaction Forms an Alkene
- 18.14 Stereochemistry of Nucleophilic Addition Reactions: Re and Si Faces
- 18.15 Designing a Synthesis VI: Disconnections, Synthons, and Synthetic Equivalents
- 18.18 Enzyme-Catalyzed Additions to α, β- Unsaturated Carbonyl Compounds
13: Carbonyl Compounds III: Reactions at the α-Carbon

- 19.10 Alkylation and Acylation of the α-Carbon Using an Enamine Intermediate
- 19.11 Alkylation of the β-Carbon: The Michael Reaction
- 19.12 An Aldol Addition Forms β-Hydroxaldehydes or β-Hydroxyketones
- 19.13 Dehydration of Aldol Addition Products Form α, β-Unsaturated Aldehydes and Ketones
- 19.14 The Crossed Aldol Addition
- 19.15 A Claisen Condensation Forms a β-Keto Ester
- 19.16 Other Crossen Condensations
- 19.17 Intramolecular Condensation and Addition Reactions
- 19.18 The Robinson Annulation
- 19.19 Carboxylic Acids with a Carbonyl Group at the 3-Position can be Decarboxylated
- 19.1 The Acidity of an α-Hydrogen
- 19.20 The Malonic Ester Synthesis: A Way to Synthesize a Carboxylic Acid
- 19.21 The Acetoacetic Ester Synthesis: A Way to Synthesize a Methyl Ketone
- 19.23 Reactions at the α-Carbon in Biological Systems
- 19.2 Keto-Enol Tautomers
- 19.3 Keto-Enol Interconversion
- 19.4 How Enolate Ions and Enols React
- 19.5 Halogenation of the α-Carbon and Aldehydes and Ketones
- 19.6 Halogenation of the α-Carbon of Carboxylic Acids: The Hell-Volhard-Zelinski Reaction
- 19.7 α-Halogenated Carbonyl Compounds Are Useful in Synthesis
- 19.8 Using LDA to Form an Enolate Ion
- 19.9 Alkylating the α-Carbon of Carbonyl Compounds

14: Determining the Structure of Organic Compounds

15: The Organic Chemistry of Carbohydrates
22.5: The Reactions of Monosaccharides in Basic Solutions

22.6: The Oxidation-Reduction Reactions of Monosaccharides

22.7: Monosaccharides form Crystalline Osazones

22.8: Lengthening the Chain: The Kiliani-Fischer Synthesis

22.9: Shortening the Chain: The Wohl Degradation

22.10 The Stereochemistry of Glucose: The Fischer Proof

22.11 Monosaccharides Form Cyclic Hemiacetals

22.12: Glucose is the Most Stable Aldohexose

22.13 Formation of Glycosides

22.14 The Anomeric Effect

22.15 Reducing and Nonreducing Sugars

22.16 Disaccharides

22.17 Polysaccharides

22.18 Some Naturally Occurring Products Derived from Carbohydrates

22.19 Carbohydrates on Cell Surfaces

22.20 Synthetic Sweeteners

• 16: The Organic Chemistry of Amino Acids, Peptides, and Proteins
 No image available

 16.1: Classification and Nomenclature of Amino Acids

 16.2: The Configuration of the Amino Acids

 16.3: The Acid-Base Properties of Amino Acids

 16.4: The Isoelectric Point

 16.5: Separating Amino Acids

 16.6: Peptide Bond and Disulfide Bonds

 16.7: The Strategy of Peptide Bond Synthesis: N-Protection and C-Activation

 16.8: An Introduction to Protein Structure

 16.9: Determining the Primary Structure of a Polypeptide or Protein

 16.10 The Secondary Structure of Proteins

 16.11: The Tertiary Structure of Proteins

 16.12: The Quaternary Structure of Proteins

 16.13: Protein Denaturation

• 17: How Enzymes Catalyze Reactions The Organic Chemistry of Vitamins
 No image available

 17.5: Niacin: The Vitamin Needed for Many Redox Reactions
• 17: The Food Chemistry of Vitamins
 - 17.6: Vitamin \(\text{B}_2 \)
 - 17.7: Vitamin \(\text{B}_1 \)
 - 17.8: Vitamin \(\text{H} \)
 - 17.9: Vitamin \(\text{B}_6 \)
 - 17.10: Vitamin \(\text{B}_{12} \)
 - 17.11: Folic Acid
 - 17.12: Vitamin \(\text{K} \)

• 18: The Organic Chemistry of Metabolic Pathways
 No image available
 - 18.1: Digestion
 - 18.2: ATP and Phosphoryl Transfer Reactions
 - 18.3: The Catabolism of Fats
 - 18.4: The Catabolism of Carbohydrates
 - 18.5: The Fates of Pyruvate
 - 18.6: The Catabolism of Proteins
 - 18.7: The Citric Acid Cycle
 - 18.8: Oxidative Phosphorylation
 - 18.9: Anabolism

• 19: The Organic Chemistry of Lipids
 No image available
 - 19.1: Fatty Acids
 - 19.2: Waxes are High-Molecular-Weight Esters
 - 19.3: Fats and Oils
 - 19.4: Phospholipids Are Components of Membranes
 - 19.5: Terpenes Contain Carbon Atoms in Multiples of Five
 - 19.6: How Terpenes Are Biosynthesized
 - 19.7: Steroids Are Chemical Messengers
 - 19.8: Synthetic Steroids

• 20: The Chemistry of Nucleic Acids
 No image available
 - 20.1: Nucleosides and Nucleotides
 - 20.2: Nucleic Acids Are Composed of Nucleotide Subunits
• 20.3: Why DNA Does Not Have A 2’-OH Group
• 20.4: The Biosynthesis of DNA is Called Replication
• 20.5: DNA and Heredity
• 20.6: The Biosynthesis of RNA is Called Transcription
• 20.7: There Are Three Kinds of RNA
• 20.8: The Biosynthesis of Proteins Is Called Translation
• 20.9: Why DNA Contains Thymine Instead of Uracil
• 20.10: How the Base Sequence of DNA Is Determined
• 20.11: The Polymerase Chain Reaction (PCR)
• 20.12: Genetic Engineering

• 21: The Organic Chemistry of Drugs: Discovery and Design
 No image available

 • 21.1: Naming Drugs
 • 21.2: Lead Compounds
 • 21.3: Molecular Modification
 • 21.4: Random Screening
 • 21.5: Serendipity in Drug Development
 • 21.6: Receptors
 • 21.7: Drug Resistance
 • 21.8: Molecular Modeling
 • 21.9: Antiviral Drugs
 • 21.10: Economics of Drugs (Governmental Regulations)