Learning Objectives

- Know the properties of polymers based on their molecular and intermolecular structures.
- Know the relationship between degree of crystallinity to physical properties of polymers.

The physical properties of a polymer such as its strength and flexibility depend on:

- **chain length** - in general, the longer the chains the stronger the polymer;
- **side groups** - polar side groups (including those that lead to hydrogen bonding) give stronger attraction between polymer chains, making the polymer stronger;
- **branching** - straight, unbranched chains can pack together more closely than highly branched chains, giving polymers that have higher density, are more crystalline and therefore stronger;
- **cross-linking** - if polymer chains are linked together extensively by covalent bonds, the polymer is harder and more difficult to melt.

Crystalline and Amorphous Polymers

When applied to polymers, the term *crystalline* has a somewhat ambiguous usage. A synthetic polymer may be loosely described as crystalline if it contains regions of three-dimensional ordering on atomic (rather than macromolecular) length scales, usually arising from intramolecular folding and/or stacking of adjacent chains.

![Crystalline polymer](image)

Synthetic polymers may consist of both crystalline and amorphous regions; the degree of crystallinity may be expressed in terms of a weight fraction or volume fraction of crystalline material. Few synthetic polymers are entirely crystalline. The crystallinity of polymers is characterized by their degree of crystallinity, ranging from zero for a completely non-crystalline polymer to one for a theoretical completely crystalline polymer. Polymers with microcrystalline regions are generally tougher (can be bent more without breaking) and more impact-resistant than totally amorphous polymers.\[^{42}\] Polymers with a degree of crystallinity approaching zero or one will tend to be transparent, while polymers with intermediate degrees of crystallinity will tend to be opaque due to light scattering by crystalline or glassy regions. For many polymers, reduced crystallinity may also be associated with increased transparency.

Figure (PageIndex{1}) The crystalline parts of this polymer are shown in blue.

Depending on the degree of crystallinity, there will be a higher temperature, the *melting point* \(t_m\), at which the crystalline regions come apart and the material becomes a viscous liquid. Such liquids can easily be injected into molds to manufacture objects of various shapes, or extruded into sheets or fibers. Other polymers (generally those that are highly cross-linked) do not melt at all; these are known as *thermosets*. If they are to be made into molded objects, the
polymerization reaction must take place within the molds — a far more complicated process. About 20% of the commercially-produced polymers are thermosets; the remainder are thermoplastics.

The Glass Transition Temperature

In some polymers (known as thermoplastics) there is a fairly definite softening point that is observed when the thermal kinetic energy becomes high enough to allow internal rotation to occur within the bonds and to allow the individual molecules to slide independently of their neighbors, thus rendering them more flexible and deformable. This defines the glass transition temperature T_g. Hard plastics like polystyrene and poly(methyl methacrylate) are used well below their glass transition temperatures, i.e., when they are in their glassy state. Their T_g values are well above room temperature, both at around 100 °C (212 °F). Rubber elastomers like polyisoprene and polyisobutylene are used above their T_g, that is, in the rubbery state, where they are soft and flexible.[2]

Fiber Formation

Bill Pittendreigh, DuPont, and other individuals and corporations worked diligently during the first few months of World War II to find a way to replace Asian silk and hemp with nylon in parachutes. It was also used to make tires, tents, ropes, ponchos, and other military supplies. It was even used in the production of a high-grade paper for U.S. currency. At the outset of the war, cotton accounted for more than 80% of all fibers used and manufactured, and wool fibers accounted for nearly all of the rest. By August 1945, manufactured fibers had taken a market share of 25%, at the expense of cotton. After the war, because of shortages of both silk and nylon, nylon parachute material was sometimes repurposed to make dresses. Nylon 6 and 66 fibers are used in carpet manufacture. Nylon is one kind of fibers used in tire cord. Herman E. Schroeder pioneered application of nylon in tires.

Figure (PageIndex{2}) Blue nylon fabric ball gown by Emma Domb, Science History Institute.

Fabrics woven or knitted from polyester thread or yarn are used extensively in apparel and home furnishings, from shirts and pants to jackets and hats, bed sheets,
blankets, upholstered furniture and computer mouse mats. industrial polyester fibers, yarns and ropes are used in car tire reinforcements, fabrics for conveyor belts, safety belts, coated fabrics and plastic reinforcements with high-energy absorption. polyester fiber is used as cushioning and insulating material in pillows, comforters and upholstery padding. polyester fabrics are highly stain-resistant—in fact, the only class of dyes which can be used to alter the color of polyester fabric are what are known as disperse dyes.

Figure 3 Stretching polyester fabric.

Acrylic fibers are synthetic fibers made from a polymer (polycrylonitrile) with an average molecular weight of -100,000, about 1900 monomer units. for a fiber to be called "acrylic" in the US, the polymer must contain at least 85% acrylonitrile monomer. typical comonomers are vinyl acetate or methyl acrylate. DuPont created the first acrylic fibers in 1941 and trademarked them under the name Orlon. it was first developed in the mid-1940s but was not produced in large quantities until the 1950s. strong and warm, acrylic fiber is often used for sweaters and tracksuits and as linings for boots and gloves, as well as in furnishing fabrics and carpets. it is manufactured as a filament, then cut into short staple lengths similar to wool hairs, and spun into yarn.

Modacrylic is a modified acrylic fiber that contains at least 35% and at most 85% acrylonitrile monomer. the comonomers vinyl chloride, vinylidene chloride or vinyl bromide used in modacrylic give the fiber flame retardant properties. end-uses of modacrylic include faux fur, wigs, hair extensions and protective clothing.

Microfiber (or microfibre) is synthetic fiber finer than one denier or decitex/thread, having a diameter of less than ten micrometres. this is smaller than the diameter of a strand of silk (which is approximately one denier), which is itself about 1/5 the diameter of a human hair.
The most common types of microfibers are made from polyesters, polyamides (e.g., nylon, Kevlar, Nomex, trogamide), or a conjugation of polyester, polyamide, and polypropylene. Microfiber is used to make mats, knits, and weaves for apparel, upholstery, industrial filters, and cleaning products. The shape, size, and combinations of synthetic fibers are selected for specific characteristics, including softness, toughness, absorption, water repellency, electrostatics, and filtering capabilities.

Environmental and Safety Issues

Microfiber textiles tend to be flammable if manufactured from hydrocarbons (polyester) or carbohydrates (cellulose) and emit toxic gases when burning, more so if aromatic (PET, PS, ABS) or treated with halogenated flame retardants and azo dyes. They are made from petrochemicals and are not biodegradable. However, if made out of polypropylene, they are recyclable (Prolen).

For most cleaning applications they are designed for repeated use rather than being discarded after use. An exception to this is the precise cleaning of optical components where a wet cloth is drawn once across the object and must not be used again as the debris collected are now embedded in the cloth and may scratch the optical surface.

Microfiber that is made from petrochemicals includes polyester and nylon which are not biodegradable. However, microfiber made from polypropylene can be recyclable. Microfiber products may also have the potential of entering the oceanic water supply and food chain similar to other microplastics. Synthetic clothing made of microfibers that are washed can release materials and travel to local wastewater treatment plants, contributing to plastic pollution in water. Fibers retained in wastewater treatment sludge (biosolids) that are land-applied can persist in soils.

There are environmental concerns about this product entering the oceanic food chain similar to other microplastics. A study by the clothing brand Patagonia and University of California, Santa Barbara, found that when synthetic jackets made of microfibers are washed, on average 1.7 grams (0.060 oz) of microfibers are released from the washing machine. These microfibers then travel to local wastewater treatment plants, where up to 40% of them enter into rivers, lakes, and oceans where they contribute to the overall plastic pollution. Microfibers account for 85% of man-made debris found on shorelines worldwide.

However, no pesticides are used for producing synthetic fibers (in comparison to cotton). If these products are made of polypropylene yarn, the yarn is dope-dyed; i.e. no water is used for dyeing (as with cotton, where thousands of liters of water become contaminated).

Summary

- The physical properties of a polymer such as its strength and flexibility depend on chain length, side groups present, branching, and cross-linking.
- Synthetic polymers may consist of both crystalline (more ordered, crystal-like) and amorphous (less ordered) regions; the degree of crystallinity may be expressed in terms of a weight fraction or volume fraction of crystalline material.
The crystallinity of polymers is characterized by their degree of crystallinity, ranging from zero for a completely non-crystalline polymer to one for a theoretical completely crystalline polymer. Polymers with microcrystalline regions are generally tougher (can be bent more without breaking) and more impact-resistant than totally amorphous polymers.

Due to their chemical structure, nylon, polyester, and acrylic fibers have physical properties that are comparable or even superior to natural fibers. Thus, many of these fibers have a variety of uses and have replaced natural fibers in various products.

Contributors and Attributions

- Stephen Lower, Professor Emeritus (Simon Fraser U.) Chem1 Virtual Textbook IF Figureis used
- Marisa Alviar-Agnew (Sacramento City College)
- Wikipedia