The Selection Rules governing transitions between electronic energy levels of transition metal complexes are:

1. \(\Delta S = 0 \) The Spin Rule
2. \(\Delta I = +/- 1 \) The Orbital Rule (or Laporte)

The first rule says that allowed transitions must involve the promotion of electrons without a change in their spin. The second rule says that if the molecule has a center of symmetry, transitions within a given set of p or d orbitals (i.e. those which only involve a redistribution of electrons within a given subshell) are forbidden.

Relaxation of these rules can occur through:

- **Spin-Orbit coupling**: this gives rise to weak spin forbidden bands
- **Vibronic coupling**: an octahedral complex may have allowed vibrations where the molecule is asymmetric. Absorption of light at that moment is then possible.
- **Mixing**: \(\pi \)-acceptor and \(\pi \)-donor ligands can mix with the d-orbitals so transitions are no longer purely d-d.

Transition Types

1. **Charge transfer**, either ligand to metal or metal to ligand. These are often extremely intense and are generally found in the UV but they may have a tail into the visible.
2. **d-d**, these can occur in both the UV and visible region but since they are forbidden transitions have small intensities.

Expected intensities of electronic transitions

<table>
<thead>
<tr>
<th>Transition type</th>
<th>Example</th>
<th>Typical values of (\epsilon / \text{m}^2 \text{mol}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin forbidden, Laporte forbidden</td>
<td>[Mn(H$_2$O)$_6$]$^{2+}$</td>
<td>0.1</td>
</tr>
<tr>
<td>Spin allowed (octahedral complex), Laporte forbidden</td>
<td>[Ti(H$_2$O)$_6$]$^{3+}$</td>
<td>1 - 10</td>
</tr>
<tr>
<td>Spin allowed (tetrahedral complex), Laporte partially allowed by d-p mixing</td>
<td>[CoCl$_4$]$^{2-}$</td>
<td>50 - 150</td>
</tr>
<tr>
<td>Spin allowed, Laporte allowed e.g. charge transfer bands</td>
<td>[TiCl$_6$]$^{2-}$ or MnO$_4^-$</td>
<td>1,000 - 10^6</td>
</tr>
</tbody>
</table>

Expected Values

The expected values should be compared to the following rough guide.
• For M^{2+} complexes, expect $\Delta = 7,500 - 12,500 \text{ cm}^{-1}$ or $\lambda = 800 - 1,350 \text{ nm}$.
• For M^{3+} complexes, expect $\Delta = 14,000 - 25,000 \text{ cm}^{-1}$ or $\lambda = 400 - 720 \text{ nm}$.

For a typical spin-allowed, but Laporte (orbitally) forbidden transition in an octahedral complex, expect $\varepsilon < 10 \text{ m}^2\text{mol}^{-1}$. Extinction coefficients for tetrahedral complexes are expected to be around 50-100 times larger than for octahedral complexes. B for first-row transition metal free ions is around 1,000 cm$^{-1}$. Depending on the position of the ligand in the nephelauxetic series, this can be reduced to as low as 60% in the complex.

Contributors

• [Prof. Robert J. Lancashire](#) (The Department of Chemistry, University of the West Indies)