Learning Objectives

In this section you will learn the following

- Chemistry of gallium and indium.
- *How to stabilize M—M multiple bonds.*

\[
\text{Li}_4(C_2H_5)_4 + 4\text{GaCl}_3 \rightarrow 2\text{LiCl} + 4\text{Ga(C}_2\text{H}_5)_3
\]

Trialkylgallium compounds are mild Lewis acids, so the corresponding metathesis reaction in ether produces the complex \((C_2H_5)_2\text{OGa(C}_2\text{H}_5)_3\). Similarly excess use of \(C_2H_5\text{Li}\) leads to the salt, \(\text{Li}[\text{Ga(C}_2\text{H}_5)_4]\).

\[
\text{Li}_4(C_2H_5)_4 + \text{GaCl}_3 \rightarrow 3\text{LiCl} + \text{Li}[\text{Ga(C}_2\text{H}_5)_4]\]

Alkylindium and alkylthallium compounds may be prepared similar to gallium analogs. \(\text{InMe}_3\) is monomeric in the gas phase and in the solid the bond lengths indicate that association is very weak. Partial hydrolysis of \(\text{TlMe}_3\) yields the linear \((\text{MeTiMe})^+\) ion, which is isoelectronic and isostructural with \(\text{HgMe}_2\).

\(\text{CpIn}\) and \(\text{CoTl}\) exist as monomers in the gas phase but are associated in solids (Inert-pair effect is displayed for In and Tl). \(\text{CpTl}\) is useful as a synthetic reagent in organometallic chemistry because it is not as highly reducing as \(\text{NaCp}\).
Species of the type R_4E_2 (single E-E bond) and $[R_4E_2]^-$ (with E-E bond order of 1.5) can be prepared for Ga and In with bulky R groups ($R = (Me_3Si)_2CH, 2,4,6-iPr_3C_6H_2$), and reduction of $[(2,4,6-iPr_3C_6H_2)_4Ga_2]$ to $[(2,4,6-iPr_3C_6H_2)_4Ga_2]^-$ is accompanied by a shortening of the Ga—Ga bond from 252-234 pm.

Using even bulkier substituents, it is possible to prepare gallium(I) compounds, RGa starting from Gal. No structural data are yet available for these monomers (We are working on it).

Crystallized as dimer but reverts to monomer when dissolved in cyclohexane.

Interest in organometallic compounds of Ga, In and TI is mainly because of their potential use as precursors to semiconducting materials such as GaAs and InP. Volatile compounds can be used in the growth of thin films by MOCVD (metal organic chemical vapor deposition) or MOVPE (metal organic vapor phase epitaxy) techniques. Precursors include appropriate Lewis base adducts of metal alkyls, e.g. Me$_3$Ga.NMe$_3$ and Me$_3$In.PEt$_3$. Thermal decomposition of gaseous precursors result in semiconductors (III-V semiconductors) which can be deposited in thin films.

\[
\text{Me}_3\text{Ga(g) + AsH}_3(g) \rightarrow [1000-1150K] \text{GaAs(s) + 3CH}_4(g))
\]

III-V semiconductors: Derive their name from the old groups 13 and 15, and include AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. Off these GaAs is of the greatest commercial interest. Although Si is probably the most important commercial semiconductor, a major advantage of GaAs over Si is that the charge carrier mobility is much greater. This makes GaAs suitable for high-speed electronic devices.

Another important difference is that GaAs exhibits a fully allowed electronic transition between valence and conduction bands (i.e. it is direct band gap semiconductor) whereas Si is an indirect band gap semiconductor. The consequence of difference is that GaAs (also other III-V types) are more suited than Si for use in optoelectronic devices, since light is emitted more efficiently. The III-Vs have important applications in light-emitting diodes (LEDs).
Problems:

1. Predict the structure of monomeric, Cp₃Ga; polymeric Cp₃In and CpIn.

Solution:

See the articles Organometallics 1985, 4, 751.
Organometallics 1988, 7, 105.

2. The reaction of [(R₃C)₄Ga₄] (R = a bulky substituent) (i) with I₂ in boiling hexane results in the formation of [(R₃C)GaI]₂(ii) and [(R₃C)Gal₂]₂(iii). Draw the structure and state the oxidation state for (i) - (iii).

Solution:

![Structures](image)

3. The I₂ oxidation of [(tBu)₄In₄] leads to the formation of the In⁺⁺ compound [(tBu)₄In₄I₄] in which each indium atom retains a tetrahedral environment. Draw the correct structure.

Solution:

![Correct Structure](image)