Skills to Develop

• Identify what species are really present in an aqueous solution.
• Identify possible products: insoluble ionic compound, water, weak electrolyte
• Write net ionic equations for reactions that occur in aqueous solution.

WRITING NET IONIC EQUATIONS FOR CHEM 101A

Chemical reactions that occur in solution are most concisely described by writing net ionic equations. A net ionic equation is the most accurate representation of the actual chemical process that occurs. Writing these equations requires a familiarity with solubility rules, acid-base reactivity, weak electrolytes and special reactions of carbonates and bicarbonates. The following is the strategy we suggest following for writing net ionic equations in Chem 101A.

Step 1: Identify the species that are actually present, accounting for the dissociation of any strong electrolytes. (Insoluble ionic compounds do not ionize, but you must consider the possibility that the ions in an insoluble compound might still be involved in the reaction.)

Step 2: Identify the products that will be formed when the reactants are combined. The most common products are insoluble ionic compounds and water. See the "reactivity of inorganic compounds" handout for more information.

Step 3: Write the balanced equation for the reaction you identified in step 2, being certain to show the major species in your equation. This is the net ionic equation for the reaction.

Example: Writing Net Ionic Equations

Write a net ionic equation to describe the reaction that occurs when 0.100 M K₃PO₄ solution is mixed with 0.100 M Ca(NO₃)₂ solution

Step 1: The species that are actually present are:

From the
K₃PO₄
Ca(NO₃)₂

From the
K⁺
Ca²⁺
Step 2: There are two possible combinations of ions here: $K^+ + NO_3^-$ (forming KNO$_3$) and $Ca^{2+} + PO_4^{3-}$ (forming $Ca_3(PO_4)_2$). We know from the general solubility rules that $Ca_3(PO_4)_2$ is an insoluble compound, so it will be formed. KNO$_3$ is water-soluble, so it will not form.

Step 3: The reaction is the combination of calcium and phosphate ions to form calcium phosphate. The balanced equation for this reaction is:

$$3Ca^{2+}(aq) + 2PO_4^{3-}(aq) \rightarrow Ca_3(PO_4)_2(s)$$

Example \(\PageIndex{2}\): Writing Net Ionic Equations

Write a net ionic equation to describe the reaction that occurs when 0.1 M HC$_2$H$_3$O$_2$ solution is mixed with 0.1 M KOH solution

Step 1: The species that are actually present are:

<table>
<thead>
<tr>
<th>From the HC$_2$H$_3$O$_2$</th>
<th>From the KOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^+</td>
<td>K^+</td>
</tr>
<tr>
<td>$C_2H_3O_2^-$</td>
<td>OH^-</td>
</tr>
</tbody>
</table>

Acetic acid, HC$_2$H$_3$O$_2$, is a weak acid. Think of the acid molecules as “potential” H^+ and $C_2H_3O_2^-$ ions, however, these “potential” ions are held together by a covalent bond. A small percentage of the acid molecules do actually ionize (break apart into ions) when they dissolve in water, but most of the weak acid molecules do not ionize.

Step 2: Reaction of an acid (source of H^+) and a base (source of OH^-) will form water. The H^+ from the HC$_2$H$_3$O$_2$ can
combine with the OH− to form H\textsubscript{2}O. Note that KC\textsubscript{2}H\textsubscript{3}O\textsubscript{2} is a water-soluble compound, so it will not form.

Step 3: In order to form water as a product, the covalent bond between the H+ and the C\textsubscript{2}H\textsubscript{3}O\textsubscript{2}− ions must break. The H+ and OH− will form water. The acetate ion is released when the covalent bond breaks. Remember to show the major species that exist in solution when you write your equation. Most of the acid molecules are not ionized, so you must write out the complete formula of the acid in your equation. The balanced equation for this reaction is:

\[
\ce{HC2H3O2(aq) + OH^-(aq) \rightarrow H2O(l) + C2H3O2^-(aq)}
\]

Example \(\PageIndex{3}\): Writing Net Ionic Equations

Write a net ionic equation to describe the reaction that occurs when solid Mg(OH)\textsubscript{2} and excess 0.1 M HCl solution

Step 1: The species that are actually present are:

<table>
<thead>
<tr>
<th>From the Mg(OH)\textsubscript{2} solid</th>
<th>From the HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg2+</td>
<td>H+</td>
</tr>
<tr>
<td>OH−</td>
<td>Cl−</td>
</tr>
</tbody>
</table>

Notice that the magnesium hydroxide is a solid; it is not water soluble. The magnesium ions and the hydroxide ions will remain held together by ionic bonds even if they are in the presence of polar water molecules. However, these individual ions must be considered as possible reactants. Think of the solid ionic compound as a possible source of Mg2+ and OH− ions. If a chemical reaction is possible, the ionic bonds between Mg2+ and OH− will break.

Step 2: Reaction of an acid (source of H+) and a base (source of OH−) will form water. The H+ from the HCl can combine with the OH− from the solid Mg(OH)\textsubscript{2} to form H\textsubscript{2}O. Note that MgCl\textsubscript{2} is a water-soluble compound, so it will not form.
Step 3: In order to form water as a product, the ionic bond between the magnesium and hydroxide ions must break. The \(\text{OH}^- \) and \(\text{H}^+ \) will form water. The magnesium ion is released into solution when the ionic bond breaks. Remember to show the major species that exist in solution when you write your equation. The magnesium hydroxide is a solid reactant, so you must write out the complete formula in your equation. The balanced equation for this reaction is:

\[
\text{Mg(OH)}_2(\text{s}) + 2\text{H}^+ (\text{aq}) \rightarrow 2\text{H}_2\text{O}(\text{l}) + \text{Mg}^{2+} (\text{aq})
\]

Example \(\PageIndex{4} \): Writing Net Ionic Equations

Write a net ionic equation to describe the reaction that occurs when 0.1 M KHCO\(_3\) solution is mixed with excess 0.1 M HNO\(_3\) solution

Step 1: The species that are actually present are:

From the KHCO\(_3\) From the HNO\(_3\)

\[\text{K}^+ \quad \text{H}^+\]
\[\text{HCO}_3^- \quad \text{NO}_3^-\]

Step 2: From the “reactivity of inorganic compounds” handout, we know that when carbonate or bicarbonate ions react with acids, carbon dioxide and water are the normal products. Be sure to refer to the handout for details of this process.

Step 3: The reaction is the combination of bicarbonate ions and hydrogen ions that will first form carbonic acid (H\(_2\)CO\(_3\)). However, carbonic acid can only exist at very low concentrations. Under normal circumstances, carbonic acid decomposes into CO\(_2\) and H\(_2\)O. The balanced equation for this reaction is:

\[
\text{HCO}_3^- (\text{aq}) + \text{H}^+ (\text{aq}) \rightarrow \text{H}_2\text{O}(\text{l}) + \text{CO}_2(\text{g})
\]

Supplemental Exercises: Writing Net Ionic Equations

For each of the following, write the net ionic equation for the reaction that will occur when the two substances are mixed. If no reaction occurs, write “no reaction.” *Note: the reactions are grouped according to the difficulty that typical students...*
have with them—our groupings may not match your own experience and ability. (Answers are available as a supplemental handout on the class website.)

Easy reactions:

1) 0.1 M AgNO₃ and 0.1 M KBr
2) 0.1 M CaCl₂ and 0.1 M NaNO₃
3) 0.1 M Fe(NO₃)₃ and 0.1 M Na₂CO₃
4) 0.1 M KOH and 0.1 M CoBr₂
5) 0.1 M HNO₃ and 0.1 M Ba(OH)₂
6) 0.1 M Pb(NO₃)₂ and 0.1 M MgSO₄
7) 0.1 M Na₂S and 0.1 M MnI₂
8) 0.1 M K₃PO₄ and 0.1 M CuCl₂
9) 0.1 M HCl and 0.1 M NaC₂H₃O₂
10) 0.1 M NiSO₄ and 0.1 M FeCl₃

Harder reactions:

1) 0.1 M HC₂H₃O₂ and 0.1 M KOH
2) 0.1 M NH₃ and 0.1 M HBr
3) 1 M HCl and solid Mn(OH)₂
4) excess 1 M HNO₃ and solid AlPO₄
5) 0.1 M AgNO₃ and 0.1 M NaOH
6) 0.1 M HClO and 0.1 M Ba(OH)₂ (no precipitate forms)
Still harder reactions:

1) 0.1 M Na\(_2\)HPO\(_4\) and 0.1 M HI (equal volumes)
2) 0.1 M NH\(_3\) and 0.1 M Fe(NO\(_3\))\(_2\)
3) 0.1 M NaHCO\(_3\) and 0.1 M HCl
4) 0.1 M K\(_2\)CO\(_3\) and 0.1 M HNO\(_3\) (equal volumes)
5) 0.1 M H\(_3\)PO\(_4\) and 0.1 M NH\(_3\) (equal volumes)

Very tricky reactions:

1) 0.1 M AgNO\(_3\) and 0.1 M NH\(_3\)
2) solid BaCO\(_3\) and excess 2 M HC\(_2\)H\(_3\)O\(_2\)
3) solid Cu(OH)\(_2\) and 1 M H\(_2\)SO\(_4\) (equal numbers of moles)
4) solid Ag\(_2\)O and excess 2 M HCl
5) 0.1 M H\(_3\)PO\(_4\) and excess 1 M KOH

ANSWERS TO NET IONIC EQUATIONS PRACTICE PROBLEMS

Easy reactions:

1) Ag\(^+\)(aq) + Br\(^-\)(aq) --> AgBr(s)
2) no reaction
3) $2 \text{Fe}^{3+}(aq) + 3 \text{CO}_3^{2-}(aq) \rightarrow \text{Fe}_2(\text{CO}_3)_3(s)$

4) $2 \text{OH}^-(aq) + \text{Co}^{2+}(aq) \rightarrow \text{Co(OH)}_2(s)$

5) $\text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O}(l)$

6) $\text{Pb}^{2+}(aq) + \text{SO}_4^{2-}(aq) \rightarrow \text{PbSO}_4(s)$

7) $\text{S}^{2-}(aq) + \text{Mn}^{2+}(aq) \rightarrow \text{MnS}(s)$

8) $2 \text{PO}_4^{3-}(aq) + 3 \text{Cu}^{2+}(aq) \rightarrow \text{Cu}_3(\text{PO}_4)_2(s)$

9) $\text{H}^+(aq) + \text{C}_2\text{H}_3\text{O}_2^-(aq) \rightarrow \text{HC}_2\text{H}_3\text{O}_2(aq)$

10) no reaction

Harder reactions:

1) $\text{HC}_2\text{H}_3\text{O}_2(aq) + \text{OH}^-(aq) \rightarrow \text{C}_2\text{H}_3\text{O}_2^-(aq) + \text{H}_2\text{O}(l)$

2) $\text{NH}_3(aq) + \text{H}^+(aq) \rightarrow \text{NH}_4^+(aq)$

3) $2 \text{H}^+(aq) + \text{Mn(OH)}_2(s) \rightarrow \text{Mn}^{2+}(aq) + 2 \text{H}_2\text{O}(l)$

4) $3 \text{H}^+(aq) + \text{AlPO}_4(s) \rightarrow \text{Al}^{3+}(aq) + \text{H}_3\text{PO}_4(aq)$

5) $2 \text{Ag}^+(aq) + 2 \text{OH}^-(aq) \rightarrow \text{Ag}_2\text{O}(s) + \text{H}_2\text{O}(l)$

6) $\text{HClO}(aq) + \text{OH}^-(aq) \rightarrow \text{ClO}^-(aq) + \text{H}_2\text{O}(l)$

Still harder reactions:

1) $\text{HPO}_4^{2-}(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{PO}_4^-(aq)$

2) $\text{Fe}^{2+}(aq) + 2 \text{NH}_3(aq) + 2 \text{H}_2\text{O}(l) \rightarrow \text{Fe(OH)}_2(s) + 2 \text{NH}_4^+(aq)$

3) $\text{HCO}_3^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) + \text{CO}_2(g)$
4) \(\text{CO}_3^{2-}(aq) + \text{H}^+(aq) \rightarrow \text{HCO}_3^-(aq) \)

5) \(\text{H}_3\text{PO}_4(aq) + \text{NH}_3(aq) \rightarrow \text{H}_2\text{PO}_4^-(aq) + \text{NH}_4^+(aq) \)

Very tricky reactions:

1) \(2 \text{Ag}^+(aq) + 2 \text{NH}_3(aq) + \text{H}_2\text{O}(l) \rightarrow \text{Ag}_2\text{O}(s) + 2 \text{NH}_4^+(aq) \)

2) \(\text{BaCO}_3(s) + 2 \text{HC}_2\text{H}_3\text{O}_2(aq) \rightarrow \text{Ba}^{2+}(aq) + 2 \text{C}_2\text{H}_3\text{O}_2^-(aq) + \text{H}_2\text{O}(l) + \text{CO}_2(g) \)

3) \(\text{Cu(OH)}_2(s) + \text{H}^+(aq) + \text{HSO}_4^-(aq) \rightarrow \text{Cu}^{2+}(aq) + 2 \text{H}_2\text{O}(l) + \text{SO}_4^{2-}(aq) \)

4) \(\text{Ag}_2\text{O}(s) + 2 \text{H}^+(aq) + 2 \text{Cl}^-(aq) \rightarrow 2 \text{AgCl}(s) + \text{H}_2\text{O}(l) \)

5) Three reactions will occur, one after the other:

\[
\begin{align*}
\text{H}_3\text{PO}_4(aq) + \text{OH}^-(aq) & \rightarrow \text{H}_2\text{PO}_4^-(aq) + \text{H}_2\text{O}(l) \\
\text{H}_2\text{PO}_4^-(aq) + \text{OH}^-(aq) & \rightarrow \text{HPO}_4^{2-}(aq) + \text{H}_2\text{O}(l) \\
\text{HPO}_4^{2-}(aq) + \text{OH}^-(aq) & \rightarrow \text{PO}_4^{3-}(aq) + \text{H}_2\text{O}(l)
\end{align*}
\]