When things are small, very light, or both, then the classical perspective or paradigm we know and love breaks down and funky unexpected results occur. This is the quantum world where the rules of the universe are significantly different from conventional rules we use in everyday life. For example, in this world nothing ever stops moving, people can exist at two spots simultaneously (just as long as you don't look too closely) and everyone has a specific wavelength.
6: One Dimensional Harmonic Oscillator

7: Angular Momentum

9: The Hydrogen Atom

10: Multi-electron Atoms
11: Angular Momenta Coupling

11: Molecules

12: Electron Scattering

\[E_n^{(1)} = \langle \phi_n | H_1 | \phi_n \rangle \]

\[c_{nk}^{(1)} = \frac{\langle \phi_k | H_1 | \phi_n \rangle}{E_n^{(0)} - E_{k}^{(0)}} \]

\[E_n^{(2)} = \sum_{k \neq n} \frac{|\langle \phi_k | H_1 | \phi_n \rangle|^2}{E_n^{(0)} - E_{k}^{(0)}} \]

12: Stationary Perturbation Theory
13: Fine and Hyperfine Structure

\[n = 2, F^2 \]
\[J = 3/2 \]
\[F = 2 \]
\[F = 1 \]
\[F = 0 \]
\[J = 1/2 \]

14: Systems of Identical Particles

15: Time-dependent Quantum Dynamics

16: Molecular Spectroscopy
17: Quantum Calculations

- Chapter 14. Nuclear Magnetic Resonance

- Zeeman Effect

- No image available

Gen Chem Quantum Theory