Crystal planes come from the structures known as crystal lattices. These lattices are three-dimensional patterns that consist of symmetrically organized atoms intersecting three sets of parallel planes. These parallel planes are "crystal planes" and are used to determine the shape and structure of the unit cell and crystal lattice. The planes intersect with each other and make 3D shapes that have six faces. These crystal planes define the crystal structure by making axes visible and are the means by which we can calculate the Miller Indices.

Contributors and Attributions

- Timothy Ulleseit (UCD)