Although all of us have taken science classes throughout the course of our study, many people have incorrect or misleading ideas about some of the most important and basic principles in science. We have all heard of hypotheses, theories, and laws, but what do they really mean? Before you read this section, think about what you have learned about these terms before. What do these terms mean to you? What do you read contradicts what you thought? What do you read supports what you thought?

What is a Fact?
A fact is a basic statement established by experiment or observation. All facts are true under the specific conditions of the observation.

What is a Hypothesis?
One of the most common terms used in science classes is a "hypothesis". The word can have many different definitions, depending on the context in which it is being used:

- Prediction - if you have ever carried out a science experiment, you probably made this type of hypothesis, in which you predicted the outcome of your experiment.
- Tentative or Proposed explanation - hypotheses can be suggestions about why something is observed, but in order for it to be scientific, we must be able to test the explanation to see if it works, if it is able to correctly predict what will happen in a situation, such as: if my hypothesis is correct, we should see ___ result when we perform ___ test.

A hypothesis is very tentative; it can be easily changed.

What is a Theory?
The United States National Academy of Sciences describes what a theory is as follows:

"Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."
"A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. Such fact-supported theories are not "guesses" but reliable accounts of the real world. The theory of biological evolution is more than "just a theory." It is as factual an explanation of the universe as the atomic theory of matter (stating that everything is made of atoms) or the germ theory of disease (which states that many diseases are caused by germs). Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact."

Not some key features of theories that are important to understand from this description:

- Theories aren't likely to change. They have so much support and are able to explain satisfactorily so many observations, that they are not likely to change. Theories can, indeed, be facts. Theories can change, but it is a long and difficult process. In order for a theory to change, there must be many observations or evidence that the theory cannot explain.

- Theories are not guesses. The phrase "just a theory" has no room in science. To be a scientific theory carries a lot of weight; it is not just one person's idea about something.

What is a Law?

Scientific laws are similar to scientific theories in that they are principles that can be used to predict the behavior of the natural world. Both scientific laws and scientific theories are typically well-supported by observations and/or experimental evidence. Usually scientific laws refer to rules for how nature will behave under certain conditions, frequently written as an equation. Scientific theories are more overarching explanations of how nature works and why it exhibits certain characteristics. As a comparison, theories explain why we observe what we do and laws describe what happens.

For example, around the year 1800, Jacques Charles and other scientists were working with gases to, among other reasons, improve the design of the hot air balloon. These scientists found, after many, many tests, that certain patterns existed in the observations on gas behavior. If the temperature of the gas is increased, the volume of the gas increased. This is known as a natural law. A law is a relationship that exists between variables in a group of data. Laws describe the patterns we see in large amounts of data, but do not describe why the patterns exist.

LAWS vs THEORIES

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence has been accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. Remember, theories are explanations and laws are patterns we see in large amounts of data, frequently written as an equation. A theory will always remain a theory, a law will always remain a law.
Video \(\PageIndex{1} \) What is the difference between scientific law and theory?

The Scientific Method

Scientists search for answers to questions and solutions to problems by using a procedure called the scientific method. This procedure consists of making observations, formulating hypotheses, and designing experiments, which in turn lead to additional observations, hypotheses, and experiments in repeated cycles (Figure \(\PageIndex{1} \)).
Step 1: Make observations

Observations can be qualitative or quantitative. **Qualitative observations** describe properties or occurrences in ways that do not rely on numbers. Examples of qualitative observations include the following: the outside air temperature is cooler during the winter season, table salt is a crystalline solid, sulfur crystals are yellow, and dissolving a penny in dilute nitric acid forms a blue solution and a brown gas. **Quantitative observations** are measurements, which by definition consist of both a number and a unit. Examples of quantitative observations include the following: the melting point of crystalline sulfur is 115.21° Celsius, and 35.9 grams of table salt—whose chemical name is sodium chloride—dissolve in 100 grams of water at 20° Celsius. For the question of the dinosaurs’ extinction, the initial observation was quantitative: iridium concentrations in sediments dating to 66 million years ago were 20–160 times higher than normal.

Step 2: Formulate a hypothesis

After deciding to learn more about an observation or a set of observations, scientists generally begin an investigation by forming a hypothesis, a tentative explanation for the observation(s). The hypothesis may not be correct, but it puts the scientist’s understanding of the system being studied into a form that can be tested. For example, the observation that we experience alternating periods of light and darkness corresponding to observed movements of the sun, moon, clouds, and shadows is consistent with either of two hypotheses:
Suitable experiments can be designed to choose between these two alternatives. For the disappearance of the dinosaurs, the hypothesis was that the impact of a large extraterrestrial object caused their extinction. Unfortunately (or perhaps fortunately), this hypothesis does not lend itself to direct testing by any obvious experiment, but scientists can collect additional data that either support or refute it.

Step 3: Design and perform experiments

After a hypothesis has been formed, scientists conduct experiments to test its validity. Experiments are systematic observations or measurements, preferably made under controlled conditions—that is, under conditions in which a single variable changes.

Step 4: Accept or modify the hypothesis

A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. In which case he can proceed to step 5. In other cases, experiments often demonstrate that the hypothesis is incorrect or that it must be modified thus requiring further experimentation.

Step 5: Development into a law and/or theory

More experimental data are then collected and analyzed, at which point a scientist may begin to think that the results are sufficiently reproducible (i.e., dependable) to merit being summarized in a law, a verbal or mathematical description of a phenomenon that allows for general predictions. A law simply says what happens; it does not address the question of why.

One example of a law, the law of definite proportions, which was discovered by the French scientist Joseph Proust (1754–1826), states that a chemical substance always contains the same proportions of elements by mass. Thus, sodium chloride (table salt) always contains the same proportion by mass of sodium to chlorine, in this case 39.34% sodium and 60.66% chlorine by mass, and sucrose (table sugar) is always 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen by mass.

Whereas a law states only what happens, a theory attempts to explain why nature behaves as it does. Laws are unlikely to change greatly over time unless a major experimental error is discovered. In contrast, a theory, by definition, is incomplete and imperfect, evolving with time to explain new facts as they are discovered.

Because scientists can enter the cycle shown in Figure 1 at any point, the actual application of the scientific method to different topics can take many different forms. For example, a scientist may start with a hypothesis formed by reading about work done by others in the field, rather than by making direct observations.

Example

Classify each statement as a law, a theory, an experiment, a hypothesis, an observation.

1. Birds evolved from dinosaurs.
2. When 10 g of ice were added to 100 mL of water at 25°C, the temperature of the water decreased to 15.5°C after the ice melted.
3. The ingredients of Ivory soap were analyzed to see whether it really is 99.44% pure, as advertised.

Solution:

1. This is a possible explanation for the origin of birds, so it is a hypothesis.
2. The temperature is measured before and after a change is made in a system, so these are observations.
3. This is an analysis designed to test a hypothesis (in this case, the manufacturer’s claim of purity), so it is an experiment.

Exercise (PageIndex{1})

Classify each statement as a law, a theory, an experiment, a hypothesis, a qualitative observation, or a quantitative observation.

1. Heat always flows from hot objects to cooler ones, not in the opposite direction.
2. Michael Jordan is the greatest pure shooter ever to play professional basketball.
3. Limestone is relatively insoluble in water but dissolves readily in dilute acid with the evolution of a gas.

Answer a:
 experiment

Answer b:
 law

Answer c:
 theory

Answer d:
 hypothesis

Answer e:
 observation

Summary

- A theory is a well-supported explanation of observations.
• An experiment is a controlled method of testing a hypothesis.

• The scientific method is a method of investigation involving experimentation and observation to acquire new knowledge, solve problems, and answer questions. The key steps in the scientific method include the following:

Step 1: Make observations.
Step 2: Formulate a hypothesis.
Step 3: Test the hypothesis through experimentation.
Step 4: Accept or modify the hypothesis.
Step 5: Development into a law and/or a theory

Contributors and Attributions

• Wikipedia

• Henry Agnew (UC Davis)