Learning Objectives

- Define endothermic and exothermic reactions.
- Describe how heat is transferred in endothermic and exothermic reactions.
- Determine whether a reaction is endothermic or exothermic through observations, temperature changes, or an energy diagram.

So far we've talked about how energy exists as either kinetic energy or potential energy and how energy can be transferred as either heat or work. While it's important to understand the difference between kinetic energy and potential energy and the difference between heat and work, the truth is, energy is constantly changing. Kinetic energy is constantly being turned into potential energy, and potential energy is constantly being turned into kinetic energy. Likewise, energy that is transferred as work might later end up transferred as heat, while energy that is transferred as heat might later end up being used to do work.

Even though energy can change form, it must still follow one fundamental law – Energy cannot be created or destroyed, it can only be changed from one form to another. This law is known as the Law of Conservation of Energy. In a lot of ways, energy is like money. You can exchange quarters for dollar bills and dollar bills for quarters, but no matter how often you convert between the two, you will not end up with any more or any less money than you started with. Similarly, you can transfer (or spend) money using cash, or transfer money using a credit card, but you still spend the same amount of money, and the store still makes the same amount of money.

A campfire is an example of basic thermochemistry. The reaction is initiated by the application of heat from a match. The reaction converting wood to carbon dioxide and water (among other things) continues, releasing heat energy in the process. This heat energy can then be used to cook food, roast marshmallows, or just keep warm when it's cold outside.

Exothermic and Endothermic Processes

When physical or chemical changes occur, they are generally accompanied by a transfer of energy. The law of
conservation of energy states that in any physical or chemical process, energy is neither created nor destroyed. In other words, the entire energy in the universe is conserved. In order to better understand the energy changes taking place during a reaction, we need to define two parts of the universe, called the system and the surroundings. The system is the specific portion of matter in a given space that is being studied during an experiment or an observation. The surroundings is everything in the universe that is not part of the system. In practical terms for a laboratory chemist, the system is the particular chemicals being reacted, while the surroundings is the immediate vicinity within the room. During most processes, energy is exchanged between the system and the surroundings. If the system loses a certain amount of energy, that same amount of energy is gained by the surroundings. If the system gains a certain amount of energy, that energy is supplied by the surroundings.

A chemical reaction or physical change is endothermic if heat is absorbed by the system from the surroundings. In the course of an endothermic process, the system gains heat from the surroundings and so the temperature of the surroundings decreases. The quantity of heat for a process is represented by the letter \(q\). The sign of \(q\) for an endothermic process is positive because the system is gaining heat. A chemical reaction or physical change is exothermic if heat is released by the system into the surroundings. Because the surroundings is gaining heat from the system, the temperature of the surroundings increases. The sign of \(q\) for an exothermic process is negative because the system is losing heat.

During phase changes, energy changes are usually involved. For example, when solid dry ice vaporizes (physical change), carbon dioxide molecules absorb energy. Meanwhile, when liquid water becomes ice energy is released. Remember that all chemical reactions involve a change in the bonds of the reactants. The bonds in the reactants are broken and the bonds of the products are formed. Chemical bonds have potential energy or "stored energy". Because we are changing the bonding, this means we are also changing how much of this "stored energy" there is in a reaction.

Energy changes are frequently shown by drawing an energy diagram. Energy diagrams show the stored/hidden energy of the reactants and products as well as the activation energy. If, on an energy diagram, the products have more stored energy than the reactants started with, the reaction is endothermic. You had to give the reaction energy. If, on the energy diagram, the products have less stored energy than the reactants started with, the reaction is exothermic.

Example

Label each of the following processes as endothermic or exothermic.

a. water boiling
b. gasoline burning
c. ice forming on a pond
Solution

a. endothermic - you must put a pan of water on the stove and give it heat in order to get water to boil. Because you are adding heat/energy, the reaction is endothermic.

b. exothermic - when you burn something, it feels hot to you because it is giving off heat into the surroundings.

c. exothermic - think of ice forming in your freezer instead. You put water into the freezer, which takes heat out of the water, to get it to freeze. Because heat is being pulled out of the water, it is exothermic. Heat is leaving.

Exercise \(\PageIndex{1} \)

Label each of the following processes as endothermic or exothermic.

a. water vapor condensing
 b. gold melting

Answer (a)
 exothermic

Answer (b)
 endothermic

Summary

Phase changes involve changes in energy. All chemical reactions involve changes in energy. This may be a change in heat, electricity, light, or other forms of energy. Reactions that absorb energy are endothermic. Reactions that release energy are exothermic.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- CK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.

- Marisa Alviar-Agnew (Sacramento City College)

- Henry Agnew (UC Davis)