The equation of motion for the density matrix follows naturally from the definition of \(\rho \) and the time-dependent Schrödinger equation.

\[
\begin{align}
\frac{\partial \rho}{\partial t} &= \frac{\partial}{\partial t} [| \psi \rangle \langle \psi |] \\
&= \left[\frac{\partial}{\partial t} | \psi \rangle \right] \langle \psi | + | \psi \rangle \left[\frac{\partial}{\partial t} \langle \psi | \right] \\
&= \frac{-i}{\hbar} H | \psi \rangle \langle \psi | + \frac{i}{\hbar} | \psi \rangle \langle \psi | H. \label{4.13}
\end{align}
\]

Equation \ref{4.14} is the \textbf{Liouville-Von Neumann equation}. It is isomorphic to the Heisenberg equation of motion, since \(\rho \) is also an operator. The solution to Equation \ref{4.14} is

\[
\rho (t) = U \rho (0) U ^ {\dagger} \label{4.15}
\]

This can be demonstrated by first integrating Equation \ref{4.14} to obtain

\[
\rho (t) = \rho (0) - \frac{i}{\hbar} \int_{0}^{t} d \tau [H (\tau) , \rho (\tau)] \label{4.16}
\]

If we expand Equation \ref{4.16} by iteratively substituting into itself, the expression is the same as when we substitute

\[
U = \exp \left\{ + \right\} \left[- \frac{i}{\hbar} \int_{0}^{t} d \tau H (\tau) \right] \label{4.17}
\]

into Equation \ref{4.15} and collect terms by orders of \(\langle H(\tau) \rangle \).

Note that Equation \ref{4.15} and the cyclic invariance of the trace imply that the time-dependent expectation value of an operator can be calculated either by propagating the operator (Heisenberg) or the density matrix (Schrödinger or interaction picture):

\[
\begin{aligned}
\langle \hat{A} (t) \rangle &= \text{Tr} [\hat{A} \rho (t)] \\
&= \text{Tr} [\hat{A} U \rho _{0} U ^{\dagger}] \\
&= \text{Tr} [\hat{A} (t) \rho _{0}]
\end{aligned}
\]

\[
\begin{align}
\rho _{nm} (t) &= \langle n | \rho (t) | m \rangle \\
&= \langle n | U | \psi _{0} \rangle \langle \psi _{0} | U ^{\dagger} | m \rangle \\
&= e^{-i \omega _{nm} (t - t_{0})} \rho _{nm} (t_{0}) \label{4.19}
\end{align}
\]

From this we see that populations, \(\rho _{nm} (t) = \rho _{nm} (t _{0}) \), are time-invariant, and coherences oscillate at the energy splitting \(\langle \omega _{nm} \rangle \).