These notes have been developed from many materials. In large part this includes the references for the course, as noted in the notes and readings. I would like to thank a number of colleagues and prior instructors who were the source of content that guided my preparation of several of these lectures, including Bob Silbey, Keith Nelson, Troy Van Voorhis, Bob Field, John Ross and Graham Fleming. I also want to thank Anne Hudson, Peter Giunta, and Tanya Shpigel for their assistance preparing the notes over the years, and the Department of Energy and National Science Foundation for their ongoing support of my research in this area.

1: Overview of Time-Independent Quantum Mechanics

2: Introduction to Time-Dependent Quantum Mechanics
3: Time-Evolution Operator

\[|\ell\rangle \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow |k\rangle \]

- 4: Irreversible Relaxation

\[\rho_{nm} \]

- 5: The Density Matrix

\[|\beta\rangle \quad |\alpha\rangle \quad |a\rangle \quad |b\rangle \]

- 6: Adiabatic Approximation

\[\bar{W}_{nk} \]

- 7: Interaction of Light and Matter
8: Mixed States and the Density Matrix

9: Irreversible and Random Processes

10: Time-Correlation Functions

11: Linear Response Theory
12: Time-domain Description of Spectroscopy

13: Coupling of Electronic and Nuclear Motion

14: Fluctuations in Spectroscopy

15: Energy and Charge Transfer
16: Quantum Relaxation Processes

- Back Matter