Chapter 8

Solids, Liquids, \& Gases

Solids, Liquids, and Gases Part 2: Energy \& Phase Changes
Energy - the capacity to do work
Energy is Conserved - Energy can neither be created nor destroyed.
Units of Energy:

Kinetic energy:
Potential energy:

Electrostatic interactions:
attraction or repulsion that occurs between charged particles

Interplay of KE and PE to determine States of Matter
Solids:
Liquids:
Gases:

Heat - a form of energy
Temperature - a measure of the hotness or coldness of an object
Heat vs Temperature

Changes of State

States present		Solid	Solid + liquid	Liquid		Liguid + gas	Gas
Temperature vs. heat graph		Solid warms \qquad or cools	Melting or fusion \qquad Freezing or solidification	Liqui warm \leftarrow or coo		Boiling or vaporization Condensation	
Key thermochemical property		pecific heat f solid	Heat of fusio or heat of solid		Specific heat of liquid	Heat of vaporization or heat of condensation	Specific heat of gas

As we increase the temperature, we increase the \qquad energy.

Melting point:
Solids melt into liquids when the \qquad overcomes the \qquad .

Heat of fusion: energy to transform a solid to a liquid or vice versa
Boiling point
Liquids boil into gases when the \qquad overcomes the \qquad .

Heat of vaporization: energy to transform a liquid to a gas or vice versa

Steam burns: water and steam are both at $100^{\circ} \mathrm{C}, \mathrm{BUT}$ steam undergoes a phase change which releases additional heat to the skin - ouch!

Solids, Liquids, and Gases Part 3: IMFs and Boiling Points

IMFs and Boiling Points

Vapor Pressure - the pressure exerted by molecules in the gas phases in contact with molecules in the liquid phase

Boiling Point:
Temperature at which the vapor pressure of the liquid equals the atmospheric pressure

Changes in Atmospheric Pressure with Altitude

```
14,000 ft above
sea level,
0.59 atm
Sea level, 1atm
\(14,000 \mathrm{ft}\) below sea level, 470 atm
```

Vapor pressure: tendency to evaporate

What happens when a liquid boils?
Molecules of a liquid are in constant motion. If a molecule near the surface has enough energy, it can escape into the gas state as vapor.

Boiling point (bp) - the temperature at which the vapor pressure of a liquid equals the external (atmospheric) pressure exerted on the liquid

H-bonding Dipole-dipole London

Tie Breakers - Other factors affecting boiling points (bp's)

Halogen	bp
F_{2}	$-187^{\circ} \mathrm{C}$
Cl_{2}	$-35^{\circ} \mathrm{C}$
Br_{2}	$59^{\circ} \mathrm{C}$
I_{2}	$184^{\circ} \mathrm{C}$

Hydrocarbons

$9^{\circ} \mathrm{C}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$36^{\circ} \mathrm{C}$

Practice predicting relative bp's
What is the dominant IMF of the following molecules?
O_{2}

HCl
CO_{2}

Arrange the molecules above in order of decreasing bp.

Determine the dominant IMF for each compound. For each pair, predict which compound has the higher bp.
CO_{2} vs SO_{2}
CH_{4} vs CCl_{4}

Solids, Liquids, and Gases Part 4: Pressure

Pressure

Barometers

Various Pressure Units

$1.000 \mathrm{~atm}=760.0 \mathrm{mmHg}=760.0$ torr $=29.92 \mathrm{inHg}=14.68 \mathrm{psi}=1.013 \times 10^{5} \mathrm{~Pa}$

Blood Pressure: the pressure exerted by blood on the walls of blood vessels.
Systolic Pressure: the maximum blood pressure
Diastolic Pressure: the minimum blood pressure

Ranges of Blood Pressure

Condition	Systolic (mmHg)	Diastolic (mmHg)
Hypotension (low)	<90	<50
Normal	$90-130$	$50-90$
Pre-hypertension	$130-140$	$90-100$
Hypertension	>140	>100

Vapor Pressure - the pressure exerted by molecules in the gas phases in contact with molecules in the liquid phase

Boiling Point:
Temperature at which the vapor pressure of the liquid equals the atmospheric pressure

Changes in Atmospheric Pressure with Altitude
$14,000 \mathrm{ft}$ above sea level,
0.59 atm

Sea level, 1 atm

14,000 ft below sea level,
470 atm

Solids, Liquids, and Gases Part 5: Gas Laws
Gases \& the Kinetic Theory of Matter

1. A gas consists of small particles (atoms or molecules) that move randomly with rapid velocities.
2. The attractive forces between the particles of a gas can be neglected.
3. The actual volume occupied by gas molecules is extremely small compared to the volume that the gas occupies.
4. The average kinetic energy of gas molecules is proportional to the Kelvin temperature.
5. Gas particles are in constant motion, moving rapidly in straight paths.

Gas Laws:

Boyle's Law: The Pressure- Volume Relationship of Gases

The volume of air in a person's lungs is 615 mL at a pressure of 760 mmHg . Inhalation occurs as the pressure in the lungs drops to 752 mmHg . To what volume did the lungs expand?

Dalton's law states that a gas mixture ($\mathrm{P}_{\text {total }}$) will exert a pressure independent of the other gases $\left(P_{n}\right)$ and each gas will behave as if it alone occupied the total volume.

$$
P_{\text {Total }}=P_{1}+P_{2}+P_{3}+P_{4}+\ldots . .+P_{n}
$$

The partial pressure of each gas can be calculated by multiplying the total pressure ($P_{\text {total }}$) by the gas percentage (\%).

$$
P_{n}=\left(\% \text { of individual } g a s_{n}\right)\left(P_{\text {Total }}\right)
$$

A mixture of the gases $\mathrm{N}_{2}, \mathrm{O}_{2}$, and He has a total pressure of 760 mmHg . If the partial pressure of N_{2} is 120 mmHg and of He is 240 mmHg . What is the partial pressure of O_{2} ?

What percent of the gas above is O_{2} ?

Henry's Law - the amount of gas dissolved in a liquid is directly proportional to the partial pressure of that gas above the liquid

Two unopened bottles of carbonated water are at the same temperature. If one is opened at the top of a mountain and the other at sea level, which will produce more bubbles? Explain your reasoning.

```
14,000 ft above
sea level,
0.59 atm
Sea level, 1 atm
14,000 ft below
sea level,
470 atm
```

What happens to the solubility of O_{2} gas in water in each of the following situations? Explain your reasoning.
a) The pressure of O_{2} over the solution is decreased.
b) The temperature of the solution is decreased

Henry's law tells us that gases diffuse from areas of high gas concentration to areas of low gas concentration.

Use the diagram above to explain why oxygen diffuses from the alveoli into the blood and from the blood into the tissues of the body.

Use the diagram above to explain why carbon dioxide diffuses from the tissues into the blood and from the blood into the alveoli and then finally out into the atmosphere.

