Take notes while watching the followng videos to prepare for the "Covalent Cpds: Lewis Structures & their 3–D Shapes Activity".

Compounds Part 2:

Lewis Structures & Molecular Compounds

Octet Rule for Covalent Bonds:

Atoms create compounds by sharing valence electrons to fill shells.

Lewis Structures

A diagram showing how the valence e<sup>-/</sup>s are arranged among atoms in compound

\*Group # =

\*If you do not understand this statement, then watch the "Valence electrons & the Octet Rule" Video first.

## Bonding Patterns

| Group 1A<br>1 e <sup>-</sup><br>H<br>1 bond | Group 3A<br>3 e <sup>-</sup> | Group 8A<br>8 e <sup>-</sup><br>He<br>0 bonds |                     |                        |                          |               |
|---------------------------------------------|------------------------------|-----------------------------------------------|---------------------|------------------------|--------------------------|---------------|
| 2 2                                         | B<br>3 bonds                 | C<br>4 bonds                                  | N<br>3 bonds        | O<br>2 bonds           | F<br>1 bond              | Ne<br>0 bonds |
|                                             | e esplain<br>le carboi       | Si<br>4 bonds                                 | P<br>3 bonds<br>(5) | S<br>2 bonds<br>(4, 6) | Cl<br>1 bond<br>(3, 5)   | Ar<br>0 bonds |
|                                             |                              |                                               |                     |                        | Br<br>1 bond<br>(3, 5)   | Kr<br>0 bonds |
|                                             | i<br>is alodimy              |                                               |                     | nneator<br>LYSIS T     | I<br>1 bond<br>(3, 5, 7) | Xe<br>0 bonds |

| 1<br>Group<br>IA   | -                  |                    |                     |                    |                     |                    |                    |                     |                    |                    |                    |                     |                           |                    |                    |                     | 18<br>Group<br>VIIIA     |
|--------------------|--------------------|--------------------|---------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|---------------------|---------------------------|--------------------|--------------------|---------------------|--------------------------|
| 1<br>H<br>1.01     | 2<br>Group<br>IIA  |                    |                     |                    |                     |                    |                    |                     |                    |                    |                    | 13<br>Group<br>IIIA | 14<br>Group<br>IVA        | 15<br>Group<br>VA  | 16<br>Group<br>VIA | 17<br>Group<br>VIIA | 2<br>He<br>4.00          |
| 3<br>Li<br>6.94    | 4<br>Be<br>9.01    |                    |                     |                    |                     |                    |                    |                     |                    |                    |                    | 5<br>B<br>10.81     | 6<br>C<br>12.01           | 7<br>N<br>14.01    | 8<br>0<br>16.00    | 9<br>F<br>19.00     | 10<br>Ne<br>20.18        |
| 11<br>Na<br>22.99  | 12<br>Mg<br>24.30  | 3<br>Group<br>IIIB | 4<br>Group<br>IVB   | 5<br>Group<br>VB   | 6<br>Group<br>VIB   | 7<br>Group<br>VIIB | 8<br>Group         | 9<br>Group<br>VIIIB | 10<br>Group        | 11<br>Group<br>IB  | 12<br>Group<br>IIB | 13<br>Al<br>26.98   | 14<br>Si<br>28.09         | 15<br>P<br>30.97   | 16<br>S<br>32.06   | 17<br>Cl<br>35.45   | 18<br>Ar<br>39.95        |
| 19<br>K<br>39.10   | 20<br>Ca<br>40.08  | 21<br>Sc<br>44.96  | 22<br>TI<br>47.87   | 23<br>V<br>50.94   | 24<br>Cr<br>. 52.00 | 25<br>Mn<br>54.94  | 26<br>Fe<br>55.84  | 27<br>Co<br>58.93   | 28<br>Ni<br>58.69  | 29<br>Cu<br>63.55  | 30<br>Zm<br>65.39  | 31<br>Ga<br>69.72   | 32<br>Ge<br>72.64         | 33<br>As<br>74.92  | 34<br>Se<br>78.96  | 35<br>Br<br>,79.90  | 36<br>Kr<br>83.80        |
| 37<br>Rb<br>85.47  | 38<br>Sr<br>87.62  | 39<br>¥<br>88.91   | 40<br>Zz<br>91.22   | 41<br>Nb<br>92.91  | 42<br>Mo<br>95.94   | 43<br>Te<br>(98)   | 44<br>Ru<br>101.07 | 45<br>Rh<br>102.91  | 46<br>Pd<br>106.42 | 47<br>Ag<br>107.87 | 48<br>Cd<br>112.41 | 49<br>In<br>114.82  | 50<br><b>Sa</b><br>118.71 | 51<br>Sb<br>121.76 | 52<br>Te<br>127.60 | 53<br>I<br>126.90   | 54<br>Xe<br>131.29       |
| 55<br>Cs<br>132.91 | 56<br>Ba<br>137.33 | 57<br>La<br>138.91 | 72<br>Hff<br>178.49 | 73<br>Ta<br>180.95 | 74<br>W<br>183,84   | 75<br>Re<br>186.21 | 76<br>Os<br>190.23 | 77<br>Ir<br>192.22  | 78<br>Pt<br>195.08 | 79<br>Au<br>196.97 | 80<br>Hg<br>200.59 | 81<br>T1<br>204.38  | 82<br>Pb<br>207.2         | 83<br>Bi<br>208.98 | 84<br>Po<br>(209)  | 85<br>At<br>(210)   | 86<br><b>Rn</b><br>(222) |
| 87<br>Fr<br>(223)  | 88<br>Ra<br>(226)  | 89<br>Ac<br>(227)  | 104<br>Rf<br>(261)  | 105<br>Db<br>(262) | 106<br>Sg<br>(266)  | 107<br>Bh<br>(264) | 108<br>Hs<br>(269) | 109<br>Mt<br>(268)  | 110<br>(271)       | 111<br>(272)       | 112<br>(277)       |                     | 114<br>(289)              |                    | 116<br>-<br>(289)  |                     | 118<br>                  |

#### Periodic Table of the Elements

### 6C - Carbon

Because carbon atoms have 4 valence electrons, they will share these electrons to form 4 bonds.

#### 7N – Nitrogen

Because nitrogen atoms have 5 valence electrons, they will share these electrons to form 3 bonds and 1 lone pair.

#### <sub>8</sub>O – Oxygen

Because oxygen atoms have 6 valence electrons, they will share these electrons to form 2 bonds and 2 lone pairs.

<sup>1</sup>H – Hydrogen Because hydrogen atoms have 1 valence electron, they form 1 bond.

## Drawing Lewis Structures for Covalent Compounds

- 1) Determine the number of valence electrons for each atom.
- 2) Write the symbols for each atom in the molecule arranged around the central atom
- 3) Arrange the atoms so that there is a single covalent bond between each pair of bonded atoms (1 covalent bond = 1 e<sup>-</sup> pair = 2 e<sup>-/</sup>s)
- 4) Add remaining e<sup>-</sup> pairs as lone pairs to create octets as needed
- 5) If an atom does not have an 'octet', shift lone pairs to form multiple bonds between atoms.
- 6) Verify each atom has an 'octet'

Examples of writing Lewis Structures

CH3OH

 $CH_2CH_2$ 

Your turn: Draw Lewis Structures for the following compounds.

 $CH_3NH_2$ 

CH3CHO

Polyatomic Ions

A group of atoms held together by covalent bonds that have a net charge

Add or remove e- from total number of electrons available.

For Cations:

For Anions:

Neutral Bonding Patterns NO Longer Apply

Exceptions to the Octet Rule can occur for S and P

Draw the Lewis Structures for the following polyatomic ions.

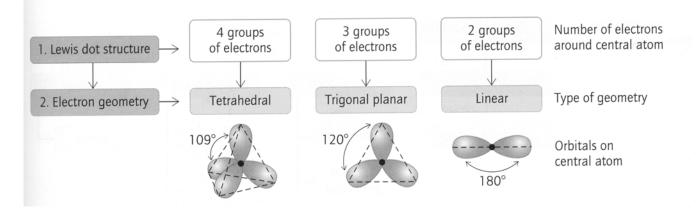
CO3<sup>2-</sup>

HPO42-

Shapes & Interactions Part 1:

Shapes of Molecules: VSEPR & Electron and Molecular Geometries

Shape of Molecules =


What is important about the shapes of molecules?
Cells rely on the shape and charge distribution of molecules to communicate with each other.
Examples: 1) hormones @ receptor cites on the surface of cells
2) drug molecules interact w/ other molecules within cells

Electron Geometry: arrangement of electrons around a central atom

Molecular Shape: arrangement of atoms around a central atom

Only 1 Rule: Electrons stay as far apart as possible.

Look at central atom of Lewis Structure to predict electron geometry:



## Electron Geometry vs Molecular Shape

## 2 Groups of electrons = Linear Electron Geometry - 180° bond angles

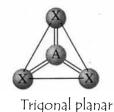
Two double bonds



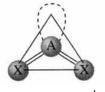
Molecular Shape

Molecular Shape

Linear


One triple bond and one single bond




Linear

### <u> 3 Groups of electrons = Trigonal Planar Electron Geometry - 120° bond angles</u>

One double bond and two single bonds



One double bond, one single bond, and one nonbonding pair



Bent or Angular

## <u>4 Groups of electrons = Tetrahedral Electron Geometry - 109° bond angles</u>

Four single bonds



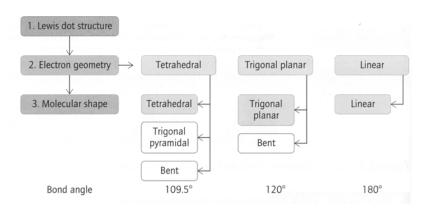
Three single bonds and one nonbonding pair



Trigonal pyramidal

Two single bonds and two nonbonding pairs




Bent or Angular

Molecular Shape

Tetrahedral

7

# Electron Geometry determines Molecular Shape



How to predict the electron geometry and molecular shape.

- 1) Start with Lewis Structures.
- 2) Look at the number of electron groups to determine the e<sup>-</sup> geometry.
- 3) If there are no lone pairs around the central atom, then the molecular shape =  $e^-$  geometry
- 4) Lone pairs around the central atom will create variations to the molecular geometry.

Remember: e<sup>-</sup> geometry determines bond angles

|                                 | Electron | Molecular | Bond         |
|---------------------------------|----------|-----------|--------------|
| <u>Compound</u> Lewis Structure | Geometry | Shape     | <u>Angle</u> |

 $\rm PH_3$ 

 $CH_2O$