| Compound | Name & Draw geometry based on central atom or carbon | If Polar indicate direction of dipole | Hybrid Orbitals
Used | |---|--|---------------------------------------|-------------------------| | CF ₄ | | | | | NH ₃ | | | | | $ m H_2O$ | | | | | OCl ₂ | | | | | PO ₄ -3 | | | | | H ₃ PO ₄ (hydrogens attach to oxygen) | | | | | | Name & Draw geometry | If Polar indicate | Hybrid Orbitals | |------------------|--------------------------|---------------------|-----------------| | Compound | based on central atom or | direction of dipole | Used | | | carbon | | | | | | | | | | | | | | | | | | | BeF_2 | CO_2 | XeF ₂ | | | | | 2 | SO_2 | SO_3 | | | | | Compound | Name & Draw geometry based on central atom or carbon | If Polar indicate direction of dipole | Hybrid Orbitals
Used | |-------------------------------|--|---------------------------------------|-------------------------| | | | | | | ~ ~ ~ ~ ~ ~ | | | | | SO ₃ ⁻² | | | | | | | | | | SO ₄ ⁻² | | | | | | | | | | SF ₄ | | | | | | | | | | XeF ₄ | | | | | | | | | | | | | | | PF ₅ | | | | | | T | T | | |------------------|--|---------------------------------------|-------------------------| | Compound | Name & Draw geometry based on central atom or carbon | If Polar indicate direction of dipole | Hybrid Orbitals
Used | | | | | | | | | | | | BrF ₅ | | | | | D 11 5 | | | | | | | | | | NO ₃ | | | | | | | | | | | | | | | C_2H_6 | | | | | | | | | | C_2H_4 | | | | | 2 7 | | | | | | | | | | | | | | | C_2H_2 | | | |