| Student Workspace | Feedback and Solutions |
| :---: | :---: |
| Question Gases 2.E.26 <br> A balloon inflated with three breaths of air has a volume of 1.7 L . At the same temperature and pressure, what is the volume of the balloon if five more same-sized breaths are added to the balloon? <br> Attribution: 8.2: Relating Pressure, Volume, Amount, and Temperature- The Ideal Gas Law (Q 8.30 OpenStax) <br> hhttps://openstax.org/books/chemistry-atoms-first-2e/pages/8-exercises | Attempt the question on your own first. <br> Unfold the page to see if you are on the right track! |
| Show all of your work | Showing all of your work includes: defining each variable stating the formula calculation set up (dimensional analysis) individual mathematical steps appropriate units and significant figures |

Answer: 4.5 L
Sig figs: 2
Units: litres
More help?
P2 - strategy map
P3 - guided solution

| Student Workspace |
| :--- |
| Question |
| A balloon inflated with three breaths of air has a volume of 1.7 L. |
| At the same temperature and pressure, what is the volume of the |
| balloon if five more same-sized breaths are added to the |
| balloon? |
| Strategy: This is a changing conditions ideal gas calculation |

1. List all the variables
a. What variables are constant?
b. What variables are changing?
$P_{1}=$ $\qquad$ $\mathrm{n}_{1}=$ $\qquad$
$\mathrm{P}_{2}=$ $\qquad$
$\qquad$
$V_{1}=$ $\qquad$ $\mathrm{T}_{1}=$ $\qquad$
$V_{2}=$ $\qquad$ $\mathrm{T}_{2}=$ $\qquad$
2. What formula relates changing variables?
*HINT* look at units of $\mathrm{R}=\mathrm{atmL} / \mathrm{molK}$
3. Cancel out the constant variables, rearrange for desired value
4. Input variables and solve

## Strategy map

Lets make a plan to solve this question

1. a. constant variables
$P_{1}=P_{2}$
$\mathrm{T}_{1}=\mathrm{T}_{2}$
b. changing variables
$\mathrm{V}_{1}=1.7 \mathrm{~L}$
$\mathrm{~V}_{2}=?$
$\mathrm{n}_{1}=3$ 'breaths' $=3 x$
$\mathrm{n}_{2}=(3+5)$ 'breaths' $=$
$(3+5) \mathrm{x}$
$\quad=8$ 'breaths' $=8 \mathrm{x}$
$x$ is an unknown number of moles of gas in a "same-sized breath"
2. Combined gas law
$\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1} \mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2} \mathrm{~T}_{2}}$
3. 

$$
\begin{aligned}
& \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \\
& V_{2}=V_{1} \frac{n_{2}}{n_{1}}
\end{aligned}
$$

4. 

$\mathrm{V}_{2}=(1.7 \mathrm{~L})\left(\frac{8 x}{3 x}\right)$
$\mathrm{V}_{2}=(1.7 \mathrm{~L})\left(\frac{8}{3}\right)$
$=(1.7 \mathrm{~L})(2.666)$
$=4.5 \mathrm{~L}$
More help?
P3 - guided solution

| Student Workspace | Feedback and Solutions |
| :---: | :---: |
| Question <br> A balloon inflated with three breaths of air has a volume of 1.7 L . At the same temperature and pressure, what is the volume of the balloon if five more same-sized breaths are added to the balloon? | Guided Solution <br> Lets think out loud about this problem |
| Make the connections between theory and calculation steps <br> 1. What does the question ask? <br> a. When we add gas to the balloon how does pressure change? <br> b. What is the volume of a breath of air? <br> c. How many moles of gas is in a breath? <br> d. What will the volume of a balloon be when more gas is added? <br> 2. Think about the behaviour of ideal gases; if pressure and temperature remain constant, predict what happens to volume when the amount is increased. <br> The thermometer and pressure gauge indicate the temperature and the pressure qualitatively, the level in the flask indicates the volume, and the number of particles in each flask indicates relative amounts. <br> (Thermometers and Pressure Gauges. By anonymous via LibreText, BY NC-SA 4.0) | 1. d. What will the volume of a balloon be when more gas is added? <br> Pressure and temperature are constant. The number of moles and volume are changing. We will calculate the final volume <br> We do not need to know that actual number of moles in each breath, because the mole ratio is the same as the volume ratio! $\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$ <br> Rearrange: $\frac{V_{1}}{V_{2}}=\frac{n_{1}}{n_{2}}$ <br> Rearrange: $v_{2}=v_{1} \frac{n_{2}}{n_{1}}$ <br> 2. Avogadro's Law At constant pressure and temperature, volume increases as amount of gas increases. |

