Task 1: Recheck the Concentration of your NaOH Solution

What is the concentration of your NaOH solution today: \qquad Is it similar, much higher, or much lower than last week? Why do you think so?

Task 2: Perform your titrations and then fill out this handy data table.
Standardized NaOH solution used in titrations with unknown acid

	Fast	Slow 1	Slow 2	Slow 3 (measure pH during this titration!)	Average (use only slow titrations)	Standard Deviation (use only slow titrations)
Initial burette reading (mL)						
Final burette reading (mL)						
Volume Used (mL)						

Using the balanced equation and your data from your slow titrations, calculate the concentration of the acid solution. Show all work.

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Task 3: Fill in the table and make a Graph of the data

Volume of NaOH added to Erlenmeyer flask (mL)	pH of solution
0.00	

Draw the graph of pH versus Volume NaOH added in the space provided. Make sure to add a title, label the axis with values and units, and write a short figure legend to receive full credit.

Task 4: Reflect on your work today.

Many students complain about doing titrations because they require attention to detail. What things did you find important to performing a successful titration? Write down one tip that you would give a student to improve their titration technique. (or answer other prompt instructor provides)

