

Task 1: Safety video \#6: Preparing for emergencies
After watching the video, reflect on possible emergencies in the general chemistry lab
Describe an emergency that could have happened in the first six weeks of lab

How did we prepare (or could we have) for the emergency you described above?

## Task 2: NaOH Standardization Titrations

KHP solution to be used in each titration.

|  | Fast | Slow 1 | Slow 2 | Slow 3 | Average <br> (use only slow titrations) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mass of KHP (grams) |  |  |  |  |  |
| Volume of KHP <br> solution (mL) | 25.00 |  |  |  |  |

## Calculations

Show all work for these calculations.
Molar mass of $\mathrm{KHP}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}\right)=$

Moles of KHP (average) =

Concentration of KHP (average) $=\frac{\text { moles } K H P}{\text { Volume KHP solution (L) }}=$

NaOH Solution Record the volumes of the NaOH solution for the fast and slow titrations. Then calculate the average volume used in the three slow titrations.

|  | Fast | Slow 1 | Slow 2 | Slow 3 | Average <br> (use only slow <br> titrations) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Initial burette <br> reading (mL) |  |  |  |  |  |
| Final burette reading <br> $(\mathrm{mL})$ |  |  |  |  |  |
| Volume Used (mL) |  |  |  |  |  |

## Task 3: Calculation of NaOH Concentration

Using the balanced equation and your titration data, determine the exact concentration (mol/L) of NaOH . You know the approximate concentration is 0.1 M , so expect your calculation to be close to that value. Show work.

$$
\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}+\mathrm{NaOH} \rightarrow \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{KNa}+\mathrm{H}_{2} \mathrm{O}
$$

Task 4: Reflect on your work today.
What would you suggest to a student that is struggling to determine the endpoint of a reaction? (or answer other prompt instructor provides)

