Task 1: Limiting Reactant in Al and CuCl₂·2H₂O Reaction

Look up or calculate the molar mass for the following elements or compounds, which you'll need for calculations.				
Copper (Cu): $\left(\frac{g}{mol}\right)$	CuCl ₂ ·2H ₂ O:	$\left(\frac{g}{mol}\right)$	Aluminum (Al):	$\left(\frac{g}{mol}\right)$

Include coefficients to balance this chemical reaction that you'll be conducting in the experiment today.

 $_Al(s) + _CuCl_2 \cdot 2H_2O(aq) \rightarrow _Cu(s) + _AlCl_3(aq) + 6H_2O(l)$

Record all your data, observations, and calculations into your lab notebook first and then fill in the tables and answer the questions in this summary sheet. Always include proper units and sig figs for every value you write down!

	Beaker A	Beaker B
Observations Before		
Reaction Begins		
Observations After		
Reaction (what remains /		
formed in each beaker?)		
Based on Observations ,		
which is limiting reactant?		
Mass CuCl ₂ ·2H ₂ O		
Moles CuCl ₂ ·2H ₂ O		
(show calculation)		
Mass Al		
Moles Al		
WOIES AI		
Theoretical Yield of Cu if		
$CuCl_2 \cdot 2H_2O$ is limiting, in		
moles (show calculations)		
Theoretical Yield of Cu if Al		
is limiting, in moles		
(show calculations)		
·		
Based on Theoretical		
Yields of Cu, what is the		
expected limiting reactant?		
Mass of Cu produced in		
your experiment.		

<i>Moles of Cu</i> produced in your experiment. (This is the <i>Actual Yield</i>).	
What was the % yield of the reaction? <i>(show calculation)</i>	

Task 2: Limiting Reactant Example in Cooking

In this box, write down the amount of each ingredient at your bench. Show calculations for any unit conversions you needed to do to get the amount of your ingredient to be the same unit as what is given in the recipe.

What is/are the <i>limiting</i> ingredient(s)? Why? Show calculation or provide an explanation.	What is/are <i>excess</i> the ingredient(s)? Why? Show calculation or provide an explanation.

Task 4: Reflect on your experience with today's experiment.

ALL experiments in science have experimental error from limitations of the equipment and techniques used. Identify one step in the procedure for Task 1 (not a calculation, not a potential mistake you made) that could have contributed to experimental error in mass of the final product of the Al and Cu reaction. Would this error cause the mass to be too high or too low? Explain why.