Task 1: Measuring Molar Mass of CO_{2} using HCl and Sodium Bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$
Write down the Ideal Gas Law Equation and define each variable.

Look up the value of the Ideal Gas Constant R , with units of $\frac{L \cdot a t m}{\mathrm{~mol} \cdot \mathrm{~K}}$ and record it here:

Record all your measurements and observations for each trial in your notebook. Then record the relevant measurements in the table here. Always include units and proper sig figs.

	Trial 1	Trial 2
Mass of sodium bicarbonate (needs to be <0.50g)		
Mass of test tube "system" before reaction: Test tube and all contents (acid, gelatin capsule, sodium bicarbonate, stir bar)		
Mass of test tube "system" after reaction: Test tube and all remaining contents in grams		
Temperature CO_{2} (Tco2)		
Pressure of Room (Same as Pco2)		
Volume displaced water (Same as Vco2)		
Observations. What worked well, what didn't work well?		
What will you do differently or more carefully to improve measurements in next trial?		

Task 2: Calculations for Experimental Molar Mass of CO_{2}. Perform your calculations for Trial 1 and 2 first in your notebook. Then in this table, record your calculations for Trial 1 and just your calculated values for Trial 2.

	Trial 1 Calculation (show all work and all units)	Trial 2
Mass of CO_{2} gas formed		
($\mathrm{m}_{\mathrm{cO} 2}$). Find the difference of		
test tube system before and		
after reaction which gives		
mass of CO_{2} that formed.		

Moles CO_{2} ($\mathrm{n}_{\mathrm{Co2}}$) using Ideal Gas Law and Observations Watch your units!		
Experimental Molar Mass of CO_{2} using $\mathrm{m}_{\mathrm{CO2}}$ and $\mathrm{n}_{\mathrm{co2}}$		
Percent Error of Average Molar Mass		

In your own words, describe how displacing the water in the wash bottle allows you to calculate the amount of CO_{2} generated. Draw a diagram to aid your explanation.

Task 3: Reflect on the experiment in today's lab
What were the advantages of using the wash bottle experimental set-up in today's experimental apparatus? What were the disadvantages? Comment on the adjustments you made to your experimental technique to improve your accuracy (percent error) in Trial 2?

