Chem1403 Worksheet

Colligative Properties Problems Key

1. What is the vapor pressure of 450.0 g of water when 68.0 g of galactose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added? Knowing vapor pressure of water at room temperature is $\mathbf{2 3 . 8}$ torr.

$$
\begin{gathered}
n_{\text {water }}=\frac{450.0 \mathrm{~g}}{18.015 \mathrm{~g} / \mathrm{mol}}=24.98 \mathrm{~mol} \\
n_{\text {water }}=\frac{68.0 \mathrm{~g}}{180.156 \mathrm{~g} / \mathrm{mol}}=.377 \mathrm{~mol} \\
P_{\text {solvent }}=X_{\text {solvent }} P_{\text {solvent }}^{o} \\
P_{\text {solvent }}=\left(\frac{24.98}{24.98+.377}\right) 23.88=23.52 \mathrm{torr}
\end{gathered}
$$

2. About 10.56 g Omeprazole $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$ was added to 50.0 g of ethyl acetate $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ for analysis. The vapor pressure of this solution is found to be 89.02 torr. Calculate the initial vapor pressure of ethyl acetate before adding in Omeprazole

$$
\begin{gathered}
n_{\text {ethyl acetate }}=\frac{50.0 \mathrm{~g}}{88.105 \mathrm{~g} / \mathrm{mol}}=0.568 \mathrm{~mol} \\
n_{\text {Omeprazole }}=\frac{10.56 \mathrm{~g}}{345.42 \mathrm{~g} / \mathrm{mol}}=.0306 \mathrm{~mol} \\
X_{\text {solvent }}=\left(\frac{0.568}{0.568+.0306}\right)=.948 \\
P_{\text {solvent }}=X_{\text {solvent }} P_{\text {solvent }}^{o} \\
P_{\text {solvent }}^{o}=\frac{P_{\text {solvent }}}{X_{\text {solvent }}}=\frac{89.02}{.948}=93.81 \mathrm{torr}
\end{gathered}
$$

3. An unknown solid was added to 100.0 g of acetonitrile and decreased the solvent's vapor pressure to 89.05 torr. With the initial vapor pressure of acetonitrile is 97.51 , calculate the number of mol for this unknown solid

$$
\begin{gathered}
n_{\text {ethyl acetate }}=\frac{50.0 \mathrm{~g}}{41.052 \mathrm{~g} / \mathrm{mol}}=2.44 \mathrm{~mol} \\
P_{\text {solvent }}=X_{\text {solvent }} P_{\text {solvent }}^{o} \\
X_{\text {solvent }}=\frac{P_{\text {solvent }}}{P_{\text {solvent }}^{o}}=\frac{89.05}{97.51}=\frac{2.44 \mathrm{~mol}}{2.44 \mathrm{~mol}+n_{\text {unknown }}} \\
.9132=\frac{2.44 \mathrm{~mol}}{2.44 \mathrm{~mol}+n_{\text {unknown }}} \\
.9132\left(2.44+n_{\text {unknown }}\right)=2.44 \\
.9132 n_{\text {unknown }}+2.228=2.44 \\
n_{\text {unknown }}=.232 \mathrm{~mol}
\end{gathered}
$$

4. NaCl was added to water to increases water's boiling point. After adding NaCl solution, boiling point of water increased to $102.5^{\circ} \mathrm{C}$. With k_{bp} of water is $.5121^{\circ} \mathrm{C} / \mathrm{m}$, what is the molality of this salt solution?
*Note: take in account of Van't Hoff Factor, NaCl is soluble in water so it dissociates into Na^{+}and Cl^{-}. Therefore, Van't Hoff Factor is 2

$$
\Delta T=i k_{b p} m
$$

$(102.5-100.0)=2\left(.5121^{\circ} \mathrm{C} / \mathrm{m}\right) m$

$$
\frac{102.5-100.0}{2\left(\frac{.5121^{\circ} \mathrm{C}}{\mathrm{~m}}\right)}=m=2.441 \mathrm{~m}
$$

5. About 1.78 g of $\mathrm{CBD}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}\right)$ was added to 400.0 g of benzene and raise benzene's boiling point to $82.1^{\circ} \mathrm{C}$. Calculate k_{bp} for benzene, knowing its normal boiling point is $80.1^{\circ} \mathrm{C}$

$$
\begin{gathered}
\text { mol of } C B D=\frac{1.78 \mathrm{~g}}{314.464 \mathrm{~g} / \mathrm{mol}}=.00566 \mathrm{~mol} \\
m=\frac{\mathrm{mol} \text { of solute }}{\mathrm{kg} \text { of solvent }}=\frac{.00566 \mathrm{~mol}}{.4000 \mathrm{~kg}}=0.01415 \mathrm{~m} \\
\Delta T=i k_{b p} \mathrm{~m} \\
\frac{\Delta T}{m}=k_{b p}=\frac{82.1-80.1}{.1415}=14.13^{\circ} \mathrm{C} / \mathrm{m}
\end{gathered}
$$

6. What is the change in freezing point for an aqueous solution of 4.00 m of $\mathrm{K}_{2} \mathrm{SO}_{4}$? Given k_{f} for water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$

$$
\begin{gathered}
\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{~K}^{2+}+\mathrm{SO}_{4}^{2-} \\
\text { Van't Hoff Factor }=3 \\
\Delta T=i k_{f p} m \\
\Delta T=3(1.86)(4.00)=22.32
\end{gathered}
$$

7. The melting point of pure benzene is 278.70 K and $\mathrm{K}_{\mathrm{f}}=4.90 \mathrm{~K} / \mathrm{m}$. When 5.83 g of an unknown solute is added to 50.0 g of benzene, the freezing point of the solution is 272.4 K. Determine the molecular weight of the unknown.

$$
\begin{gathered}
\Delta T=i k_{f p} m \\
\frac{\Delta T}{i k_{f p}}=m=\frac{278.70-272.4}{4.90}=1.3 \mathrm{~m} \\
\frac{5.83 \mathrm{~g} \text { solute }}{1.3 \frac{\mathrm{~mol} \text { solute }}{\mathrm{kg} \text { solvent }}\left(\frac{.05 \mathrm{~kg} \text { solvent }}{1}\right)}=89.69 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

8. A solution prepared by dissolving .80 g of cocaine $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}\right)$ in water to make 16 mL of solution at $25^{\circ} \mathrm{C}$. What is the osmotic pressure of this solution?

$$
\begin{gathered}
n \text { cocaine }=\frac{.80 \mathrm{~g} \text { cocaine }}{303.353 \mathrm{~g} / \mathrm{mol}}=.002637 \mathrm{~mol} \\
\pi=M R T \\
\pi=\left(\frac{.002637 \mathrm{~mol}}{.016 \mathrm{~L}}\right)\left(0.0821 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right)(25+273.15)=4.034 \mathrm{~atm}
\end{gathered}
$$

9. About .260 g of unknown solid was dissolved in 50.0 g of water at $30.0^{\circ} \mathrm{C}$ resulting in osmotic pressure of 2.18 atm . What is the molar mass of this unknown

$$
\begin{gathered}
\pi=M R T \\
M=\frac{\pi}{R T}=\frac{2.18 \mathrm{~atm}}{\left(.0821 \frac{\mathrm{Latm}}{\mathrm{~mol} \mathrm{~K}}\right)(303.15 \mathrm{~K})}=.0876 \mathrm{M} \\
\frac{.260 \mathrm{~g} \text { solute }}{.0876 \frac{\text { mol solute }}{\text { L solution }}\left(\frac{.05 \mathrm{~L} \text { solution }}{1}\right)}=59.36 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

