

To make a comparison between two mean values for unpaired data do the following:

1. From the **Tools** menu select **Data Analysis....**
2. Select **t-Test: Two Sample Assuming Equal Variances** or **t-test: Two Sample Assuming Unequal Variances**
3. Click on the box for **Variable 1 Range** and highlight the data in your spreadsheet
4. Click on the box for **Variable 2 Range** and highlight the data in your spreadsheet
5. Click on the box for **Hypothesized mean difference** and enter 0 (zero)
6. Enter your desired value for alpha in the appropriate box
7. Select the radio button for **Output Range**, click in the associated box, and then click on the spreadsheet cell that will be the upper left cell for the output
8. Select **OK**; results will appear in the spreadsheet

Results are given for both one-tailed and two-tailed tests. If the value of $P(T \leq t)$ is less than t Stat, then the difference between the two data sets is significant at the chosen confidence level. In the example shown below there is no evidence for a difference between the new and standard methods.

		t-Test: Two-Sample Assuming Equal Variances			
standard	new				
21.62	21.54				
22.20	20.51			standard	new
24.27	22.31	Mean		22.8557143	22.5057143
23.54	21.30	Variance		1.6323619	3.69032857
24.25	24.62	Observations		7	7
23.09	25.72	Pooled Variance		2.66134524	
21.02	21.54	Hypothesized Mean Difference		0	
		df		12	
		t Stat		0.40137605	
		$P(T \leq t)$ one-tail		0.34759949	
		t Critical one-tail		1.78228674	
		$P(T \leq t)$ two-tail		0.69519898	
		t Critical two-tail		2.17881279	