Worksheet 3B Solutions

Jonathan Sarker

October 16, 2016

The probability of finding a 1-D quantum mechanical particle in a range from x and $x+d x$ is given by:

$$
\begin{equation*}
\int_{x}^{x+d x} \Psi_{n} *(x) \Psi_{n}(x) d x \tag{1}
\end{equation*}
$$

The eigenfunctions obtained for the particle in a box is

$$
\begin{equation*}
\Psi_{n}(x)=B \sin \left(\frac{n \pi x}{a}\right) \tag{2}
\end{equation*}
$$

where n is the quantum number, a is the length of the box, and B is a constant.

1. (a) What is the most simplified expression for the probability density for particle in a box?

The probability density is given by:

$$
\begin{equation*}
P(x)=\Psi_{n} *(x) \Psi_{n}(x)=B^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) \tag{3}
\end{equation*}
$$

(b) What is the general expression for the probability of finding the particle in a box of length a for any quantum level n ?
The probability of finding a particle in a box between b and c is given by:

$$
\begin{equation*}
P(b: c)=\int_{c}^{b} \Psi_{n} *(x) \Psi_{n}(x)=\int_{c}^{b} B^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) \tag{4}
\end{equation*}
$$

(c) Intuitively, if the particle is in the box, what is the probability of finding the particle in that box?
The probability is 1 .
2. The general solution for the integral of $\sin ^{2}()$ over all space is:

$$
\begin{equation*}
\int \sin ^{2}(k z) d z=\frac{1}{2} z-\frac{1}{4 k} \sin (2 k z) \tag{5}
\end{equation*}
$$

(a) Find the numeric value for the probability that the particle is in the box using the above expression.
For our case, $k=\frac{n \pi}{a}$, so we have:

$$
\begin{equation*}
P(\text { inbox })=\int_{0}^{a} B^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right)=B^{2}\left(\left.\frac{1}{2} x\right|_{0} ^{a}-\left.\frac{a}{4 n \pi} \sin \left(\frac{2 n \pi z}{a}\right)\right|_{0} ^{a}\right)=B^{2} \frac{a}{2} \tag{6}
\end{equation*}
$$

Without a specific value for the normalization constant, we cannot obtain a numerical value. However, the value should be 1 .
3. (a) For equation (6) to be normalized, we must have $B=\sqrt{\frac{2}{a}}$
(b) What is the normalized eigenfunction for particle in a box?

The normalized eigenfunction is:

$$
\begin{equation*}
\Psi_{n}(x)=B \sin \left(\frac{n \pi x}{a}\right)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \tag{7}
\end{equation*}
$$

(c) Using the normalized eigenfunction, what is the probability of finding the particle in the box, between 0 and a ?
As before we have:

$$
\begin{equation*}
P(\text { inbox })=\int_{0}^{a} B^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right)=B^{2}\left(\left.\frac{1}{2} x\right|_{0} ^{a}-\left.\frac{a}{4 n \pi} \sin \left(\frac{2 n \pi z}{a}\right)\right|_{0} ^{a}\right)=\frac{2}{a} \frac{a}{2}=1 \tag{8}
\end{equation*}
$$

which makes physical sense.

