Worksheet 5A Solutions

Jonathan Sarker

October 28, 2016

1. Vectors in Cartesian Coordinates
(a) How do you write an arbitrary vector \vec{A} : length $=|\vec{A}|$

Take the square root of the sum of the squares of its individual components or: $|\vec{A}|=\sqrt{\vec{A} \cdot \vec{A}}$
(b) Draw vectors, $\vec{B}=2 \hat{i}-\hat{j}+3 \hat{k}$, and $\vec{C}=-\hat{i}+2 \hat{j}-\hat{k}$.

Label the positive directions for the x, y, and z axes. To draw any vector, move in the x direction the number of ticks in front of \hat{i}, in the y direction move the number of ticks in front of \hat{j} and in the \mathbf{z} direction, move the number of ticks in front of \hat{k}.
(c) What is $\vec{B}-\vec{C}$?
$\left.\begin{array}{l}\vec{B}-\vec{C}=(2 \hat{i}-\hat{j} \\ \sqrt{3^{2}+(-3)^{2}+4^{2}}\end{array}+3 \hat{k}\right)-(-\hat{i}+2 \hat{j}-\hat{k})=3 \hat{i}-3 \hat{j}+4 \hat{k}$ The length of the vector is
2. Vectors in Spherical Coordinates
(a) What is x in terms of r, θ, and ϕ ?
$x=r \sin (\theta) \cos (\phi)$
(b) What is y in terms of r, θ, and ϕ ?
$y=r \sin (\theta) \sin (\phi)$
(c) What is z in terms of r, θ, and ϕ ?
$z=r \cos (\theta)$
3. Volume Elements
(a) What is the expression for the volume element used in the 3D integrals: $d V=d x d y d z$? $d V=r^{2} \sin (\theta) d r d \theta d \phi$
(b) Does your volume element yield the correct value for the volume of a sphere if you perform the integral, $V=\int d V$? What is the explicit form of this integral in terms of r, θ, and ϕ ? $\int d V=\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} r^{2} \sin (\theta) d r d \theta d \phi=\frac{4}{3} \pi R^{3}$
(c) Why is $d r d \theta d \phi$ alone not the appropriate volume element?

A volume element must have units of cubic length whereas the above has units of only length. Angles must be paired with a distance from a center to form a length.
(d) What is the expression used to evaluate the average value of $\cos (\theta)$ over the surface of sphere?
A differential area is given by $d A=r^{2} \sin (\theta) d \theta d \phi$. We must weigh $\cos (\theta)$ by whatever fraction of total area the differential area occupies:

$$
\begin{equation*}
<\cos (\theta)>=\frac{\int_{0}^{\pi} \int_{0}^{2 \pi} \cos (\theta) r^{2} \sin (\theta) d \theta d \phi}{\int_{0}^{\pi} \int_{0}^{2 \pi} r^{2} \sin (\theta) d \theta d \phi}=\frac{\int_{0}^{\pi} \int_{0}^{2 \pi} \cos (\theta) r^{2} \sin (\theta) d \theta d \phi}{4 \pi r^{2}} \tag{1}
\end{equation*}
$$

(e) What is the expression used to evaluate the average of $\cos ^{2}(\theta)$ over the surface of a sphere? Using the same reasoning:

$$
\begin{equation*}
<\cos ^{2}(\theta)>=\frac{\int_{0}^{\pi} \int_{0}^{2 \pi} \cos ^{2}(\theta) r^{2} \sin (\theta) d \theta d \phi}{4 \pi r^{2}} \tag{2}
\end{equation*}
$$

