

**I. The Mole:**

The mole is one of the seven SI base units and represents a unit of measurement for "quantity". The mole represents the number of carbon-12 atoms in 12 grams of carbon-12. One mole of carbon-12 contains  $6.022 \times 10^{23}$  atoms of carbon-12.

$$\mathbf{1 \text{ Mole} = 6.022 \times 10^{23}}$$

**I.A: Counting by weight.** In this exercise we will calculate the number of atoms in a mass of an element, or the mass of an element which will provide a desired number of atoms.

(in class)

1. 2.5 mg Fe = \_\_\_\_\_ mole Fe

2. 2.5 g Fe = \_\_\_\_\_ atoms of Fe.

3. What mass of lead has  $2.43 \times 10^{18}$  atoms?

**I.B: Calculate the Molar Mass of the following Compounds.**

(in class)

1. Barium Chloride BaCl<sub>2</sub>

2. Glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>)

(take home)

3. Aluminum Sulfate

4. Lysine (an amino acid, C<sub>6</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>)

5. Vitamin C (Ascorbic acid, C<sub>6</sub>H<sub>8</sub>O<sub>6</sub>)

6. Barium hydroxide

7. Potassium phosphate

**I.C: Molar Mass Calculations,  
(in class)**

1. How many moles are in 246.9 g of  $\text{PCl}_3$
2. How many moles are in  $1.23 \times 10^4$  g of  $\text{Mn(OH)}_2$
3. How many atoms are in  $1.23 \times 10^4$  g of  $\text{Mn(OH)}_2$
4. How many grams are in 32.8 kmoles of  $\text{SF}_6$   
(take home)
5. How many moles are in  $7.67 \times 10^{-4}$  g of  $\text{MnS}$
6. How many moles are in 246.9 kg of  $\text{Cu(NO}_3)_2$
7. How many moles are in 246.9 mg of  $\text{P}_4\text{H}_{10}$
8. How many grams are in 1.376 moles of  $\text{CuSO}_4$
9. How many grams are in  $7.67 \times 10^{-4}$  moles of  $\text{CuSO}_4$
10. How many grams are in  $1.67 \times 10^4$  moles of  $\text{CuSO}_4$
11. How many molecules of Vitamin C (Ascorbic acid,  $\text{C}_6\text{H}_8\text{O}_6$ ) are in a tablet which contains 500 mg of Vitamin C? Give answer in both the number of moles and the number of molecules

**II. Determination of the moles of elements in a compound****II.A: (in class)**

1. How many moles of hydrogen are in 2.5 moles of ammonium phosphate?

2. How many grams of aluminum are in 2.50 kg of aluminum sulfate?

3. What mass of carbonic acid has 12.0 g of carbon?

(take home)

4. How many moles of sulfur are in 1.45kg of chromium(VI)sulfate?

5. How many grams of barium are in 2.50 kg of barium hydroxide?

6. How many grams of oxygen are in 2.50 kg of barium hydroxide?

7. How many grams of hydrogen are in 2.50 kg of barium hydroxide?

8. What mass of silver carbonate has 52.0 g of silver?

9. What mass of silver carbonate has 52.0 g of carbon?

10. What mass of silver carbonate has 52.0 g of oxygen?

**Fractions and Percentages:**

The fraction of one part in a system with more than one part is that part divided by the whole. When we look at compound formula we can express the fraction of one element in one of two ways, either the number of particles or the masses of those particles. Chemists typically use mole fractions to describe the former and mass percentages to describe the later.

Note: Neither the mass percent or the mole fraction depend on the quantity of matter you have. If you are not given a quantity, choose one mole (as the math is easiest)

Molar Mass

C2WS4

By: Dr. Robert Belford

**IIB: Give the mole fraction of each element in the following compounds.**  
(in class)

1. mercury(II)sulfide

2.  $\text{IF}_7$

3. copper(II) nitrate

4. ammonium phosphate

(take home)

5. titanium(II) hydroxide

6. chromium(III) nitrite

7. vanadium(V) phosphate

8. molybdenum(V) sulfite

9. iron(II) phosphite

10. Iron(II) sulfate

**IIC: Give the mass percent of each element in the following compounds.**  
(in class)

1. mercury(II)sulfide

2.  $\text{IF}_7$

3. copper(II) nitrate

4. ammonium phosphate

(take home)

5. titanium(II) hydroxide

6. chromium(III) nitrite

7. vanadium(V) phosphate

8. molybdenum(V) sulfite

9. iron(II) phosphite

10. Iron(II) sulfate