Solution Stoichiometry

By: Dr. Robert Belford

C4ws2K

Solution Stoichiometry

Molarity and solution stoichiometry: Many reactants are solutes which dissolve in a solvent. If two solutions are mixed a chemical reaction can occur between the dissolved solutes and we need to be able to quantitatively describe these reactions.

Conventions:

M=Molarity=moles/L n=moles m=mass

I. Molarity and Solution Concentration: Molarity is given the symbol M and represents the moles of solute dissolved in one liter of solution (mole/L).

(In Class)

I.a) What is the molarity of Aluminum sulfate if 4.67g are diluted to 100.0 mL with water?

$$\frac{4.67 gAl_2(SO_4)_3}{0.1000L} \left(\frac{molAl_2(SO_4)_3}{342.17g}\right) = 0.136M$$

I.b): What is the molarity of Aluminum ion if 4.67g of aluminum sulfate are diluted to 100.0 mL with water?

$$\frac{4.67 gAl_2(SO_4)_3}{0.1000L} \left(\frac{molAl_2(SO_4)_3}{342.17 g}\right) \left(\frac{2molAl^{+3}}{molAl_2(SO_4)_3}\right) = 0.273M$$

I.c): What mass of aluminum sulfate would you need to dilute to 50.0 mL to make a solution which is 0.700M in aluminum sulfate?

$$\frac{0.700 molAl_2(SO_4)_3}{L} \left(\frac{342.17 gAl_2(SO_4)_3}{mol}\right) 0.0500 L = 12.0 gAl_2(SO_4)_3$$

II. Dilution Problems: Note, in a dilution problem you are adding solvent. That is, you are not changing the moles of solute, just the volume of the solution.

Trick: Assign your knowns, identify unknowns, and algebraically solve the equation,

II.a) What is the concentration of sodium chloride if 50.0 mL of 0.400 M is diluted to 150.0 mL.

$$M_i V_i = M_f V_f$$
$$M_f = M_i \left(\frac{V_i}{V_f}\right) = 0.400 M \left(\frac{50.0 mL}{150.0 mL}\right) = 0.133 M$$

II.b) What volume do you need to dilute 50.0 mL of 0.800M Aluminum chloride to with solvent if you want a solution which is:

i. 0.400M in aluminum chloride?

$$M_{i}V_{i} = M_{f}V_{f}$$
$$V_{f} = V_{i}\left(\frac{M_{i}}{M_{f}}\right) = 50.0mL\left(\frac{0.800MAlCl_{3}}{0.400MAlCl_{3}}\right) = 100.mL$$

ii. 0.400M in aluminum ion?

$$\begin{split} M_{i}V_{i} &= M_{f}V_{f} \\ V_{f} &= V_{i}\left(\frac{M_{i}}{M_{f}}\right) = 50.0mL\left(\frac{0.800MAlCl_{3}}{0.400\frac{molAl^{+3}}{L}\left(\frac{molAlCl_{3}}{1molAl^{+3}}\right)}\right) = 100.mL \end{split}$$

iii. 0.400M chloride?

$$\begin{split} M_i V_i &= M_f V_f \\ V_f &= V_i \left(\frac{M_i}{M_f}\right) = 50.0 mL \left(\frac{0.800 MAlCl_3}{0.400 \frac{molCl^-}{L} \left(\frac{molAlCl_3}{3molCl^-}\right)}\right) = 300.mL \end{split}$$

III: Solution Stoichiometry

This problems is cumulative and covers competencies from all of the competency quizzes

Consider mixing 50.0 mL of 0.700M aluminum sulfate with 50.0 mL of 0.700M lead(II)nitrate.

III.a Balancing Equations (review)

i. Write the molecular equation and include all phases.

 $Al_2(SO_4)_3(aq) + 3 Pb(NO_3)_2(aq) --> 2Al(NO_3)_3(aq) + 3PbSO_4(s)$

ii. Write the total ionic equation, include phases of all species except ions.

 $2Al^{+3} + 3SO_4^{-2} + 3Pb^{+2} + 6NO_3^{-} --> 3PbSO_4(s) + 2Al^{+3} + 6NO_3^{-}$

iii. Write the net ionic equation, include phases of all species except ions.

 $SO_4^{-2} + Pb^{+2} \longrightarrow PbSO_4(s)$

iv. What is the limiting reagent?

Step 1: Calculate Moles Reactants in Net Ionic Equation.

$$0.05L\left(\frac{0.700 \text{mol Pb}(\text{NO}_3)_2}{L}\right)\left(\frac{\text{mol Pb}^{+2}}{\text{mol Pb}(\text{NO}_3)_2}\right) = 0.035 \text{mol Pb}^{+2}$$
$$0.05L\left(\frac{0.700 \text{mol Al}_2(\text{SO}_4)_3}{L}\right)\left(\frac{3 \text{mol SO}_4^{-2}}{\text{mol Al}_2(\text{SO}_4)_3}\right) = 0.105 \text{mol SO}_4^{-2}$$

Step 2: Divide by Stoichiometric Coefficient.

$$0.035 mol Pb^{+2} \left(\frac{1}{1mol Pb^{+2}}\right) = 0.035$$
$$0.105 mol SO_4^{-2} \left(\frac{1}{1mol SO_4^{-2}}\right) = 0.105$$

So Lead is the limiting Reagent

By: Dr. Robert Belford

v. What is the mass of precipitate formed?

Base Yield on Complete Consumption of Limiting Reagent. From above

$$0.05L\left(\frac{0.700 \text{mol Pb}(\text{NO}_3)_2}{L}\right)\left(\frac{\text{mol Pb}^{+2}}{\text{mol Pb}(\text{NO}_3)_2}\right)\left(\frac{1 \text{mol Pb}SO_4}{1 \text{mol Pb}^{+2}}\right)\left(\frac{303.4 \text{ g Pb}SO_4}{\text{mol}}\right) = 10.6 \text{ g Pb}SO_4$$

Short Cut: Use Result from Step 2 in the last step where you determined the limiting reagent and multiply by stoichiometric coefficient of desired product.

$$0.035mol Pb^{+2}\left(\frac{1}{1mol Pb^{+2}}\right) = 0.035\left(\frac{1mol PbSO_4}{1}\right)\left(\frac{303.4 g PbSO_4}{mol}\right) = 10.6g PbSO_4$$

vi.: What are the spectator ions?

Nitrate and Aluminum

vii. What is the concentration of the spectator ions after dilution.

You have diluted the spectator ions: So you need to calculate moles present and divide by total volume Step 1: Calculate Moles Spectator Ions.

$$0.05L\left(\frac{0.700 \text{mol Pb}(\text{NO}_3)_2}{L}\right)\left(\frac{2 \text{mol NO}_3^-}{\text{mol Pb}(\text{NO}_3)_2}\right) = 0.0700 \text{mol NO}_3^-$$
$$0.05L\left(\frac{0.700 \text{mol Al}_2(\text{SO}_4)_3}{L}\right)\left(\frac{2 \text{mol Al}^{+3}}{\text{mol Al}_2(\text{SO}_4)_3}\right) = 0.0700 \text{mol Al}^{+3}$$

Step 2: Divide by Total Volume

 $\frac{0.0700 mol NO_3^-}{0.0500 + 0.0500} = 0.700 M NO_3^ \frac{0.0700 mol Al^{+3}}{0.0500 + 0.0500} = 0.700 M Al^{+3}$

By: Dr. Robert Belford

viii. What is the concentration of the excess reactant?

Step 1: Calculate Initial Moles of Excess Reagent

Step 2: Calculate Moles Excess Reactant Used Up with the Complete Consumption of the Limiting Reagent.

Step 3: Calculate Moles Excess by subtracting moles consumed (step 2) from moles initial (Step 1).

Step 4: Divide Moles Excess by Total Volume

Step 1:
$$0.0500L\left(\frac{0.700 \text{mol } \text{Al}_{2}(\text{SO}_{4})_{3}}{L}\right)\left(\frac{3 \text{mol } SO_{4}^{-2}}{\text{mol } \text{Al}_{2}(\text{SO}_{4})_{3}}\right) = 0.105 \text{mol } SO_{4}^{-2}$$

Step 2: $0.0500L\left(\frac{0.700 \text{mol } \text{Pb}(\text{NO}_{3})_{2}}{L}\right)\left(\frac{\text{mol } \text{Pb}^{+2}}{\text{mol } \text{Pb}(\text{NO}_{3})_{2}}\right)\left(\frac{1 \text{mol } SO_{4}^{-2}}{1 \text{mol } \text{Pb}^{+2}}\right)$
 $= 0.0350 \text{mol } SO_{4}^{-2} \text{ consumed}$
Step 3: $(0.105 - 0.0350) \text{mol } SO_{4}^{-2} = 0.070 \text{mol } SO_{4}^{-2} \text{ excess}$

Step 4:
$$\frac{0.070 \text{mol}}{0.1000 \text{L}} = 0.70 M SO_4^{-2}$$