Solution Stoichiometry

Molarity and solution stoichiometry: Many reactants are solutes which dissolve in a solvent. If two solutions are mixed a chemical reaction can occur between the dissolved solutes and we need to be able to quantitatively describe these reactions.

Conventions:

M=Molarity=moles/L
 $\mathrm{n}=$ moles
 m=mass

I. Molarity and Solution Concentration: Molarity is given the symbol M and represents the moles of solute dissolved in one liter of solution (mole/L).

(In Class)

I.a) What is the molarity of Aluminum sulfate if 4.67 g are diluted to 100.0 mL with water?
$\frac{4.67 \mathrm{gAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{0.1000 \mathrm{~L}}\left(\frac{\mathrm{molAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{342.17 \mathrm{~g}}\right)=0.136 \mathrm{M}$
I.b): What is the molarity of Aluminum ion if 4.67 g of aluminum sulfate are diluted to 100.0 mL with water?

$$
\frac{4.67 \mathrm{gAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{0.1000 \mathrm{~L}}\left(\frac{\mathrm{molAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{342.17 \mathrm{~g}}\right)\left(\frac{2 \mathrm{molAl}^{+3}}{\mathrm{molAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}\right)=0.273 \mathrm{M}
$$

I.c): What mass of aluminum sulfate would you need to dilute to 50.0 mL to make a solution which is 0.700 M in aluminum sulfate?
$\frac{0.700 \mathrm{molAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{L}\left(\frac{342.17 \mathrm{gAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{\mathrm{~mol}}\right) 0.0500 \mathrm{~L}=12.0 \mathrm{gAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
II. Dilution Problems: Note, in a dilution problem you are adding solvent. That is, you are not changing the moles of solute, just the volume of the solution.

Initial Moles $=$ Final Moles
 $\mathbf{n}_{\mathrm{i}}=\mathbf{n}_{\mathrm{F}}$
 $\mathbf{M}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}=\mathbf{M}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}$

Trick: Assign your knowns, identify unknowns, and algebraically solve the equation,
II.a) What is the concentration of sodium chloride if 50.0 mL of 0.400 M is diluted to 150.0 mL .

$$
\begin{aligned}
& M_{i} V_{i}=M_{f} V_{f} \\
& M_{f}=M_{i}\left(\frac{V_{i}}{V_{f}}\right)=0.400 M\left(\frac{50.0 m L}{150.0 m L}\right)=0.133 M
\end{aligned}
$$

II.b) What volume do you need to dilute 50.0 mL of 0.800 M Aluminum chloride to with solvent if you want a solution which is:
i. 0.400 M in aluminum chloride?
$M_{i} V_{i}=M_{f} V_{f}$
$V_{f}=V_{i}\left(\frac{M_{i}}{M_{f}}\right)=50.0 m L\left(\frac{0.800 \mathrm{MAlCl}_{3}}{0.400 \mathrm{MAlCl}_{3}}\right)=100 . \mathrm{mL}$
ii. 0.400 M in aluminum ion?
$M_{i} V_{i}=M_{f} V_{f}$
$V_{f}=V_{i}\left(\frac{M_{i}}{M_{f}}\right)=50.0 \mathrm{~mL}\left(\frac{0.800 \mathrm{MAlCl}_{3}}{0.400 \frac{\mathrm{moll}^{+3}}{\mathrm{~L}}\left(\frac{\mathrm{molAlCl}_{3}}{1 \mathrm{molAl}^{+3}}\right)}\right)=100 . \mathrm{mL}$
iii. 0.400 M chloride?

$$
\begin{aligned}
& M_{i} V_{i}=M_{f} V_{f} \\
& V_{f}=V_{i}\left(\frac{M_{i}}{M_{f}}\right)=50.0 \mathrm{~mL}\left(\frac{0.800 \mathrm{MAlCl}_{3}}{0.400 \frac{\mathrm{molCl}^{-}}{\mathrm{L}}\left(\frac{\mathrm{molAlCl}_{3}}{3 \mathrm{molCl}^{-}}\right)}\right)=300 . \mathrm{mL}
\end{aligned}
$$

III: Solution Stoichiometry

This problems is cumulative and covers competencies from all of the competency quizzes
Consider mixing 50.0 mL of 0.700 M aluminum sulfate with 50.0 mL of 0.700 M lead(II)nitrate.

III.a Balancing Equations (review)

i. Write the molecular equation and include all phases.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \quad-->2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{PbSO}_{4}(\mathrm{~s})$
ii. Write the total ionic equation, include phases of all species except ions.
$2 \mathrm{Al}^{+3}+3 \mathrm{SO}_{4}^{-2}+3 \mathrm{~Pb}^{+2}+6 \mathrm{NO}_{3}^{-}-->3 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{Al}^{+3}+6 \mathrm{NO}_{3}{ }^{-}$
iii. Write the net ionic equation, include phases of all species except ions.

$$
\mathrm{SO}_{4}^{-2}+\mathrm{Pb}^{+2} \quad-->\mathrm{PbSO}_{4}(\mathrm{~s})
$$

iv. What is the limiting reagent?

Step 1: Calculate Moles Reactants in Net Ionic Equation.
$0.05 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{L}\right)\left(\frac{\mathrm{mol} \mathrm{Pb}}{} \mathrm{mol}^{+2}\right)=0.035 \mathrm{~mol} \mathrm{~Pb} b^{+2}$
$0.05 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{L}\right)\left(\frac{3 \mathrm{~mol} \mathrm{SO}}{4}-2 \mathrm{ml}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)=0.105 \mathrm{~mol} \mathrm{SO}$
Step 2: Divide by Stoichiometric Coefficient.
$0.035 \mathrm{~mol} \mathrm{~Pb}^{+2}\left(\frac{1}{1 \mathrm{~mol} \mathrm{~Pb}^{+2}}\right)=0.035$
$0.105 \mathrm{~mol} \mathrm{SO}_{4}^{-2}\left(\frac{1}{1 \mathrm{~mol} \mathrm{SO}_{4}^{-2}}\right)=0.105$
So Lead is the limiting Reagent

v. What is the mass of precipitate formed?

Base Yield on Complete Consumption of Limiting Reagent.
From above
$0.05 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{~Pb}^{\left(\mathrm{NO}_{3}\right)_{2}}}{L}\right)\left(\frac{\mathrm{mol} \mathrm{Pb}}{}{ }^{+2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{PbSO}_{4}}{\mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}\right)\left(\frac{303.4 \mathrm{~g} \mathrm{PbSO}}{4}\right)=10.6 \mathrm{~g} \mathrm{PbSO} 4$
Short Cut: Use Result from Step 2 in the last step where you determined the limiting reagent and multiply by stoichiometric coefficient of desired product.
$0.035 \mathrm{~mol} \mathrm{~Pb}^{+2}\left(\frac{1}{1 \mathrm{~mol} \mathrm{~Pb}^{+2}}\right)=0.035\left(\frac{1 \mathrm{~mol} \mathrm{PbSO}_{4}}{1}\right)\left(\frac{303.4 \mathrm{~g} \mathrm{PbSO}}{4}\right)=10.6 \mathrm{~g} \mathrm{PbSO}$

vi.: What are the spectator ions?

Nitrate and Aluminum
vii. What is the concentration of the spectator ions after dilution.

You have diluted the spectator ions: So you need to calculate moles present and divide by total volume
Step 1: Calculate Moles Spectator Ions.
$0.05 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{L}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NO}}{3}-{ }^{-}\right)=0.0700 \mathrm{~mol} \mathrm{NO} O_{3}^{-}$
$0.05 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{L}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Al}^{+3}}{\mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}\right)=0.0700 \mathrm{~mol} \mathrm{Al}^{+3}$
Step 2: Divide by Total Volume
$\frac{0.0700 \mathrm{~mol} \mathrm{NO}_{3}^{-}}{0.0500+0.0500}=0.700 \mathrm{M} \mathrm{NO}_{3}^{-}$
$\frac{0.0700 \mathrm{~mol} \mathrm{Al}^{+3}}{0.0500+0.0500}=0.700 \mathrm{M} \mathrm{Al}^{+3}$

viii. What is the concentration of the excess reactant?

Step 1: Calculate Initial Moles of Excess Reagent
Step 2: Calculate Moles Excess Reactant Used Up with the Complete
Consumption of the Limiting Reagent.
Step 3: Calculate Moles Excess by subtracting moles consumed (step 2)
from moles initial (Step 1).
Step 4: Divide Moles Excess by Total Volume

Step 1: $\quad 0.0500 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{L}\right)\left(\frac{3 \mathrm{~mol} \mathrm{SO}_{4}^{-2}}{\mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}\right)=0.105 \mathrm{~mol} \mathrm{SO}$
Step 2: $\quad 0.0500 \mathrm{~L}\left(\frac{0.700 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{L}\right)\left(\frac{\mathrm{mol} \mathrm{Pb}}{}{ }^{+2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SO}_{4}^{-2}}{\mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}\right)\left(\frac{m o l ~ P b^{+2}}{1}\right)$ $=0.0350 \mathrm{~mol} \mathrm{SO}{ }_{4}^{-2}$ consumed
Step 3: (0.105-0.0350) $\mathrm{mol} \mathrm{SO}_{4}^{-2}=0.070 \mathrm{~mol} \mathrm{SO}_{4}^{-2}$ excess
Step 4: $\frac{0.070 \mathrm{~mol}}{0.1000 \mathrm{~L}}=0.70 \mathrm{M} \mathrm{SO}_{4}^{-2}$

