Solve the following questions with these given information

- Specific heat capacity of ice $\left(\mathrm{C}_{\text {ice }}\right)=2.01 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- Specific heat capacity of steam $\left(\mathrm{C}_{\text {steam }}\right)=2.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- Molar heat of fusion for water $\left(\Delta H_{f}\right)=6.02 \mathrm{~kJ} / \mathrm{mol}$
- Molar heat of vaporization for water $\left(\Delta \mathrm{H}_{\mathrm{v}}\right)=40.6 \mathrm{~kJ} / \mathrm{mol}$

1. How much energy is required to heat 190.0 g of water from $25.0^{\circ} \mathrm{C}$ to $95^{\circ} .0 \mathrm{C}$?

$$
\mathrm{q}=\mathrm{mc} \Delta \mathrm{~T}=(190.0 \mathrm{~g})\left(4.184 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(95.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}\right)=55647 \mathrm{~J}=55.6 \mathrm{~kJ}
$$

2. How much energy is needed to evaporate 190.0 g of water at $100.0^{\circ} \mathrm{C}$?

$$
q=m o l \times \Delta H_{v}=190.0 g \times \frac{1 \mathrm{~mol}}{18.01528 g} \times \frac{40.6 \mathrm{~kJ}}{m o l}=428.19 \mathrm{~kJ}=4.28 \times 10^{2} \mathrm{~kJ}
$$

3. How much energy is required to heat 300.0 g of water from $45.0^{\circ} \mathrm{C}$ to $120.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{q}=\mathrm{mc} \Delta \mathrm{~T}=(300.0 \mathrm{~g})\left(4.184 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(100.0^{\circ} \mathrm{C}-45.0^{\circ} \mathrm{C}\right)=69036 \mathrm{~J}=69.0 \mathrm{~kJ} \\
& q=m o l \times \Delta H_{v}=300.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{18.01528 \mathrm{~g}} \times \frac{40.6 \mathrm{~kJ}}{m o l}=676.09 \mathrm{~kJ}=676 \mathrm{~kJ} \\
& \mathrm{q}=\mathrm{mc} \Delta \mathrm{~T}=(300.0 \mathrm{~g})\left(2.06 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(120.0^{\circ} \mathrm{C}-100.0^{\circ} \mathrm{C}\right)=12360 \mathrm{~J}=12.4 \mathrm{~kJ} \\
& q_{\text {total }}=69.0 \mathrm{~kJ}+676 \mathrm{~kJ}+12.4 \mathrm{~kJ}=757.4 \mathrm{~kJ}
\end{aligned}
$$

4. How many joules are given off when cooling 25.0 g water from $10.0^{\circ} \mathrm{C}$ to $-25.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& q=m c \Delta \mathrm{~T}=(25.0 \mathrm{~g})\left(4.184 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(0^{\circ} \mathrm{C}-10.0^{\circ} \mathrm{C}\right)=-1046 \mathrm{~J}=-1.05 \mathrm{~kJ} \\
& q=m o l \times \Delta H_{f}=25.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{18.01528 \mathrm{~g}} \times \frac{-6.02 \mathrm{~kJ}}{m o l}=-8.3540 \mathrm{~kJ}=-8.35 \mathrm{~kJ} \\
& q=m c \Delta \mathrm{~T}=(25.0 \mathrm{~g})\left(2.01 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(-25.0^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)=-1256.25 \mathrm{~J}=-1.26 \mathrm{~kJ} \\
& q_{\text {total }}=-1.05 \mathrm{~kJ}+-8.35 \mathrm{~kJ}+-1.26 \mathrm{~kJ}=-10.66 \mathrm{~kJ}
\end{aligned}
$$

5. How much energy is needed to heat up 55.0 g of ice from $-15.0^{\circ} \mathrm{C}$ into steam at $115.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& q_{1}=m c \Delta \mathrm{~T}=(55.0 \mathrm{~g})\left(2.01 \mathrm{~J} \mathrm{~g}{ }^{\circ} \mathrm{C}\right)\left(0^{\circ} \mathrm{C}-\left(-15.0^{\circ} \mathrm{C}\right)\right)=1658.25 \mathrm{~J}=1.66 \mathrm{~kJ} \\
& q_{2}=m o l \times \Delta H_{f}=55.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{18.01528 \mathrm{~g}} \times \frac{6.02 \mathrm{~kJ}}{m o l}=18.38 \mathrm{~kJ}=18.4 \mathrm{~kJ} \\
& \mathrm{q}_{3}=\mathrm{mc} \Delta \mathrm{~T}=(55.0 \mathrm{~g})\left(4.184 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(100.0^{\circ} \mathrm{C}-0.0^{\circ} \mathrm{C}\right)=23012 \mathrm{~J}=23.0 \mathrm{~kJ} \\
& q_{4}=m \mathrm{~mol} \times \Delta H_{v}=55.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{18.01528 \mathrm{~g}} \times \frac{40.6 \mathrm{~kJ}}{m o l}=123.95 \mathrm{~kJ}=124 \mathrm{~kJ} \\
& q_{5}=m c \Delta \mathrm{~T}=(55.0 \mathrm{~g})\left(2.06 \mathrm{~J} \mathrm{~g}^{\circ} \mathrm{C}\right)\left(115.0^{\circ} \mathrm{C}-100.0^{\circ} \mathrm{C}\right)=1699.5 \mathrm{~J}=1.70 \mathrm{~kJ} \\
& q_{\text {total }}=1.66 \mathrm{~kJ}+18.4 \mathrm{~kJ}+23.0 \mathrm{~kJ}+124 \mathrm{~kJ}+1.70 \mathrm{~kJ}=168.76 \mathrm{~kJ}
\end{aligned}
$$

6. What is the final temperature when 37.8 kJ is added to 55.0 g of water at $-15.0^{\circ} \mathrm{C}$?

Based on result in question $5, q_{1}+q_{2}=20.1 \mathrm{~kJ}$ and $q_{1}+q_{2}+q_{3}=43.1 \mathrm{~kJ}$. Since 37.8 kJ is larger than $q_{1}+q_{2}$, we can calculate how much heat is left over.

$$
\begin{aligned}
& q_{\text {left over }}=37.8 \mathrm{~kJ}-20.1 \mathrm{~kJ}=17.7 \mathrm{~kJ} \text { or } 17700 \mathrm{~J} \\
& \mathrm{q}=\mathrm{mc} \Delta \mathrm{~T}=>17700 \mathrm{~J}=55.0 \mathrm{~g}(4.184)\left(\mathrm{T}_{\mathrm{f}}-0.0^{\circ} \mathrm{C}\right) \\
& T_{f}=T_{i}+\frac{q}{m c_{l}}=0.0^{\circ} \mathrm{C}+\frac{17700 \mathrm{~J}}{55.0 g\left(4.184 \mathrm{~J} / g^{\circ} \mathrm{C}\right)}=76.9^{\circ} \mathrm{C}
\end{aligned}
$$

