Question 12	Sample calc for dilution of Lake Nakuru samples								
	typical sample concentration in solid (ug/g) 147								
	Step 1: Solid sampled and c	lried							
	Step 2: 1.0 g of dried solid re 1.0	emoved							
	Step 3: the 1.0 g of dried so	lid was digeste	d and diluted to 100.0 mL						
expected concentratior (ug/g * g)/L	1470 ug/L	(ppb)							
	Step 4: This solution was dil	uted 1:20 befo	re electrochemical analysis						
Final Concentration above conc /20	73.5 ug/L	(ppb)							

Note: this question and answer take into consideration the sediment and suspended solid samples described (which analyses samples by XRF and AAS) and the sample preparation described in Locatelli 1999, which pre

11 -

in Nelson 1998 epares sediment samples for ASV analysis.

Determination of Pb in Sediment Samples					
Working Std conc I (1) / uA I (2) / uA 4.980 (10 into 500) 0.1011 0.3045 0.1008 0.3026 0.1205 0.3225 mass Pb(NO3)2 0 0 0	ppm p 0.0244 0.0245 0.0292	24.4 24.5 29.2	x 20 (ppm) 0.4877 0.4901 0.5848	x 0.100 L (mg) 0.04877 0.04901 0.05848	Pb ug/g 48.8 49.0 58.5
0.1990 target = 0.1998 249.0 ppm (stock std)	avg stdev RSD	26.0 2.8 0.106	0.5 0.1 0.106	0.1 0.0 0.106	52.1 5.5 0.106
Determination of Zn in Sediment Samples					Zn
Working Std conc I (1) / uA I (2) / uA 5.006 (5 into 1000) 0.2134 0.3152 0.2159 0.3165 0.2200 0.3251	ppm 0.1013 0.1036 0.1011	0000 101.3 103.6 101.1	x 20 (ppm) 2.0251 2.0723 2.0222	x 0.100 L (mg) 0.20251 0.20723 0.20222	ug/g 202.5 207.2 202.2
mass Zn <u>1.0011</u> target = 1.0000	avg	102.4	2.0	0.2	204.0
1001.1 ppm (stock std)	stdev RSD	1.4 0.014	0.0 0.014	0.0 0.014	2.8 0.014

Determination of Cu in Se	diment Sam	nples						
								Cu
Working Std conc	I (1) / uA	I (2) / uA	pr	om p	pb	x 20 (ppm)	x 0.100 L (mg)	ug/g
5.001 (10 into 500)	0.0985	0.2000		0.0474	47.4	0.9478	0.09478	94.8
	0.0996	0.2015		0.0477	47.7	0.9546	0.09546	95.5
	0.1000	0.2099		0.0445	44.5	0.8893	0.08893	88.9
mass CuCl2 . 2H20								
0.3354 target = 0.3354			· <u> </u>					
			avg		46.5	0.9	0.1	93.1
250.0 ppm (stock std)			stdev		1.8	0.0	0.0	3.6
			RSD		0.039	0.039	0.039	0.039

In the paper Locatelli 1999, they used 1000 ppm standard solutions (purchased) and diluted for working standard. Here I have the students prepare the standards from scratch and calculate concentrations. To simplify or shorten the problem, I could have students start with the 1000 ppm standards rather than solid materials.

Stock standard: Weigh out lead nitrate to prepare 250.0 ppm Pb (weigh 0.1998 g and diute to 500.0 mL). Working standard: Dilute 250.0 ppm standard to 5.000 ppm (10.00 mL into 500.0 mL) with appropriate electrolyte

Stock standard: Prepare 1000 ppm Zn - weigh out 1.0000 g Zn(s); dissolve in con HCl and dilute to 1.000 L. Working standard: dilute to 5.00 ppm (5.00 mL of stock into 1000.0 mL) with appropriate electrolyte

Stock standard: Weigh out cupric chloride to prepare 250.0 ppm Cu (weigh 0.3354 g and diute to 500.0 mL). Working standard: Dilute 250.0 ppm standard to 5.000 ppm (10.00 mL into 500.0 mL) with appropriate electrolyte

Sample preparation is described in the document: briefly, 1 g sediment samples were acid digetsted and diluted to 100 mL. This solution was diluted by a factor of 20 with appropriate electrolyte. The analysis was performed on this second solution.

Determination of Cr in Sediment Samples

								Cr
Working Std conc	I (1) / uA	I (2) / uA	_	ppm ppb		x 20 (ppm)	x 0.100 L (mg)	ug/g
5.000 (10 into 500)	0.1111	0.2522		0.0387	38.7	0.7736	0.07736	77.4
	0.1212	0.2855		0.0363	36.3	0.7251	0.07251	72.5
	0.1359	0.2989		0.0409	40.9	0.8187	0.08187	81.9
Stock Standard conc (ppm)								
1000.0			-					
			avg		38.6	0.8	0.1	77.2
250.0 ppm (stock std)			stdev		2.3	0.0	0.0	4.7
			RSD		0.061	0.061	0.061	0.061

Modified from Wang 1997 and Locatelli 1999

Stock standard: 1000 mg/L standard solution is diluted appropriately Working standard: Dilute 250.0 ppm standard to 5.000 ppm (10.00 mL into 500.0 mL) with appropriate electrolyte

Sample preparation is described in the document: briefly, 1 g sediment samples were acid digetsted and diluted to 100 mL. This solution was diluted by a factor of 20 with the following solution:

0.01 M DTPA (complexing agent), 0.04 M sodium acetate (buffer), and 0.5 M sodium nitrate (pH 5.6)

The analysis was performed on 10.00 mL this second solution.

I (1) corresponds to the peak current from a scan of this solution

I (2) corresponds to the peak current after addition of a 100 uL spike of chromium standard

Determina	tion of Pb in Sus	pended So	lids						
									Pb
Working Std	l conc	l (1) / uA	I (2) / uA		ppm	ppb	x 20 (ppm)	x 0.100 L (mg)	ug/g
4.980	(10 into 500)	0.1511	0.9513		0.0093	9.3	0.1859	0.01859	18.6
		0.1623	0.9253		0.0105	10.5	0.2093	0.02093	20.9
		0.1506	0.9222		0.0096	9.6	0.1921	0.01921	19.2
mass Pb(NC	,								
0.1990	target = 0.1998								
				avg		9.8	0.2		19.6
249.0	ppm (stock std)			stdev		0.6	0.0		1.2
				RSD		0.062	0.062	0.062	0.062
Determine	tion of 7n in Sug	nonded Co	lido						
Determina	tion of Zn in Sus	pended 50	lius						Zn
Working Std	Loope	l (1) / uA	I (2) / uA		nnm	nnh	x 20 (ppm)	x 0.100 L (mg)	ug/g
5.006	(5 into 1000)	0.1985	0.4545		ppm 0.0379	ppb 37.9	0.7588	0.07588	75.9
5.000	(3 1110 1000)	0.1903	0.4345		0.0379	33.3	0.6667	0.06667	66.7
		0.1762	0.4863		0.0304	30.4	0.6086	0.06086	60.9
mass Zn		0.1005	0.4000		0.0304	50.4	0.0000	0.00000	00.5
1.0011	target = 1.0000								
1.0011	target = 1.0000			avg		35.6	0.7	0.1	67.8
1001.1	ppm (stock std)			stdev		3.8	0.1		7.6
1001.1				RSD		0.106	0.112		0.112
				NOD.		0.100	0.112	0.112	0.112

Determination of Cu	a in Suspended So	olids						
								Cu
Working Std conc	I (1) / uA	I (2) / uA	ł	opm	ppb	x 20 (ppm)	x 0.100 L (mg)	ug/g
5.001 (10 into	500) 0.0999	0.4697		0.0133	13.3	0.2657	0.02657	26.6
	0.1001	0.4898		0.0126	12.6	0.2527	0.02527	25.3
	0.0959	0.4800		0.0123	12.3	0.2456	0.02456	24.6
mass CuCl2 . 2H20								
0.3354 target = 0).3354		. –					
			avg		12.7	0.3	0.0	25.5
250.0 ppm (stoo	ck std)		stdev		0.5	0.0	0.0	1.0
			RSD		0.040	0.040	0.040	0.040

In the paper Locatelli 1999, they used 1000 ppm standard solutions (purchased) and diluted for working standard. Here I have the students prepare the standards from scratch and calculate concentrations. To simplify or shorten the problem, I could have students start with the 1000 ppm standards rather than solid materials.

Stock standard: Weigh out lead nitrate to prepare 250.0 ppm Pb (weigh 0.1998 g and diute to 500.0 mL). Working standard: Dilute 250.0 ppm standard to 5.000 ppm (10.00 mL into 500.0 mL) with appropriate electrolyte

Stock standard: Prepare 1000 ppm Zn - weigh out 1.0000 g Zn(s); dissolve in con HCl and dilute to 1.000 L. Working standard: dilute to 5.00 ppm (5.00 mL of stock into 1000.0 mL) with appropriate electrolyte

Stock standard: Weigh out cupric chloride to prepare 250.0 ppm Cu (weigh 0.3354 g and diute to 500.0 mL). Working standard: Dilute 250.0 ppm standard to 5.000 ppm (10.00 mL into 500.0 mL) with appropriate electrolyte

Sample preparation: Water samples were collected and filtered to obtain 1 g (dry weight) of suspended solids. The solids were acid digetsted and diluted to 100 mL. This solution was diluted by a factor of 20 with appropriate electrolyte. The analysis was performed on this second solution.

Determination of Cr in Sediment Samples

								Cr
Working Std conc	I (1) / uA	l (2) / uA	1	ppm j	opb	x 20 (ppm)	x 0.100 L (mg)	ug/g
5.000 (10 into 500)	0.1015	0.8986		0.0063	6.3	0.1259	0.01259	12.6
	0.1985	0.9563		0.0129	12.9	0.2587	0.02587	25.9
	0.1574	0.9254		0.0101	10.1	0.2025	0.02025	20.3
Stock Standard conc (ppm)								
1000.0								
			avg		9.8	0.2	0.0	19.6
250.0 ppm (stock std)			stdev		3.3	0.1	0.0	6.7
			RSD		0.341	0.341	0.341	0.341

Modified from Wang 1997 and Locatelli 1999

Stock standard: 1000 mg/L standard solution is diluted appropriately Working standard: Dilute 250.0 ppm standard to 5.000 ppm (10.00 mL into 500.0 mL) with appropriate electrolyte

Sample preparation: Water samples were collected and filtered to obtain 1 g (dry weight) of suspended solids. The solids were acid digetsted and diluted to 100 mL. This solution was diluted by a factor of 20 with appropriate electrolyte: 0.01 M DTPA (complexing agent), 0.04 M sodium acetate (buffer), and 0.5 M sodium nitrate (pH 5.6)

The analysis was performed on 10.00 mL this second solution.

- I (1) corresponds to the peak current from a scan of this solution
- I (2) corresponds to the peak current after addition of a 100 uL spike of chromium standard