Worksheet 3A Solutions

Jonathan Sarker

October 15, 2016

1. Suppose

$$
\begin{equation*}
\hat{A}=\frac{d}{d x} \tag{1}
\end{equation*}
$$

(a) What is the expression for $\hat{A} f(x)$?

$$
\hat{A} f(x)=\frac{d f(x)}{d x}
$$

(b) If $f(x)=\frac{1}{x^{2}}$, what is $\hat{A} f(x)$?

$$
\hat{A} f(x)=-\frac{2}{x}
$$

(c) What is an example of \hat{A} that's linear?

Derivatives, integral, multiplication by a factor etc.
(d) What is an example of \hat{A} that's not linear?

$$
\cos (), \log (), f(x)=x+c, \text { etc }
$$

2. An eigenvalue equation takes the form:

$$
\begin{equation*}
\hat{A}=a f(x) \tag{2}
\end{equation*}
$$

Suppose $\hat{A}=\frac{d}{d x}$ and $f(x)=\exp (6 x)$.
(a) What is the eigenvalue of \hat{A} operating on $f(x)$?

6
(b) For $\hat{A}=\frac{d}{d x}$, can any mathematical function, $g(x)$ serve as the eigenfunction of \hat{A} ? Give examples that would not work.
No, some exceptions include $\sin (), \cos (), \log ()$.
(c) Suppose $\hat{B}=\frac{d^{2}}{d x^{2}}$. What function could be an eigenfunction of \hat{B} ? What is the corresponding eigenvalue?
$\sin (k x)$, where the eigenvalue is $-k$
3. Suppose that $\hat{A}=\frac{d}{d x}$ and $\hat{B}=x^{2}$
(a) For any function, $f(x)$, what is $\hat{A} f(x)$?
$\hat{A} f(x)=\frac{d f(x)}{d x}$
(b) What is $\hat{B} f(x)$?
$\hat{B} f(x)=x^{2} f(x)$
(c) What is $\hat{A} \hat{B} f(x)$?

$$
\hat{A} \hat{B} f(x)=x^{2} \frac{d f(x)}{d x}+2 x f(x)
$$

(d) What is $\hat{B} \hat{A} f(x)$?
$\hat{B} \hat{A} f(x)=x^{2} \frac{d f(x)}{d x}$
(e) Is $\hat{A} \hat{B} f(x)=\hat{B} \hat{A} f(x)$? Why?

They are not equal because $x^{2} \frac{d f(x)}{d x}+2 x f(x) \neq x^{2} \frac{d f(x)}{d x}$ and therefore, they do not commute.
4. Suppose that $\hat{A}=\frac{d}{d x}$ and $\hat{B}=10$
(a) What is is $\hat{A} f(x)$?

$$
\hat{A} f(x)=\frac{d f(x)}{d x}
$$

(b) What is $\hat{B} f(x)$?
$\hat{B} f(x)=10 f(x)$
(c) What is $\hat{A} \hat{B} f(x)$?
$\hat{A} \hat{B} f(x)=10 \frac{d f(x)}{d x}$
(d) What is $\hat{B} \hat{A} f(x)$?
$\hat{B} \hat{A} f(x)=10 \frac{d f(x)}{d x}$
(e) Do \hat{A} and \hat{B} commute?

Yes they do.

