Worksheet 2 Solutions

Jonathan Sarker

October 15, 2016

1. Answer the following questions for this function of t and x :

$$
\begin{equation*}
f(x, t)=\exp (-3 t) \cos (2 x) \tag{1}
\end{equation*}
$$

(a) Which part(s) of $f(x, t)$ vary with x ?

Only $\cos (x)$ varies with x.
(b) Which part(s) of $f(x, t)$ are constant when x is varied?

$$
\exp (-3 t)
$$

(c) What is $\frac{\partial f}{\partial x}$?

$$
\frac{\partial f}{\partial x}=-2 \exp (-3 t) \sin (2 x)
$$

(d) If of $f(x, t)=a(x) b(t)$, using the definition of $f(x, t)$ above, what is $a(x)$?

$$
a(x)=\cos (2 x)
$$

(e) What is $b(t)$?

$$
b(t)=\exp (-3 t)
$$

2. For any function defined as $u(x, t)=X(x) T(t)$:
(a) Write the general expression for $\frac{\partial u}{\partial x}$ in terms of $u(x, t)=X(x) T(t)$

$$
\frac{\partial u}{\partial x}=T(t) \frac{d X(x)}{d x}
$$

(b) Similarly, how would you write $\frac{\partial u}{\partial t}$?

$$
\frac{\partial u}{\partial x}=X(x) \frac{d T(t)}{d t}
$$

3. The equation for the vibration of a string is:

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u(x, t)}{\partial x^{2}} \tag{2}
\end{equation*}
$$

where x is the distance along the string and t is time.
4. Given that $u(x, t)=X(x) T(t)$, rewrite the equation so that one side depends only on x and the other depends only on t :
$\frac{1}{T(t)} \frac{\partial^{2} T(t)}{\partial t^{2}}=\frac{1}{v^{2}} \frac{1}{X(x)} \frac{\partial^{2} X(x)}{\partial x^{2}}=K$
5. What about $u(x, t)$ makes separation of variables possible? $u(x, t)$ is a product of two different functions, of the form $X(x) T(t)$ which allows for separation.
6. Is $u(x, t)=x \exp (-3 t) \cos (2 x)$ separable? What about $u(x, t)=\exp (-i x) \cos \left(\frac{2 x}{\pi t}\right)$?

The first is separable because it is of the form $X(x) T(t)$. The second is not because the $\cos ()$ cannot be factored into the form $X(x) T(t)$.

