Worksheet 1
Gaussian distribution:

$$
D(x)=N_{0} e^{-N_{1} x^{2}}
$$

The integrated value A:
$A=\int_{-\infty}^{\infty} N_{0} e^{-N_{1} x^{2}} d x=\left\{\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2}\left(\frac{\pi}{a}\right)^{1 / 2}\right\}=N_{o} \cdot 2 \int_{0}^{\infty} e^{-N_{1} x^{2}} d x=N_{o} \cdot 2 \cdot \frac{1}{2} \sqrt{\frac{\pi}{N_{1}}}=N_{0} \sqrt{\frac{\pi}{N_{1}}}$
The mean $<\mathrm{x}>$:
$x=\int_{-\infty}^{\infty} x \cdot N_{0} e^{-N_{1} x^{2}} d x=\left\{\int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}}, n=0\right\}=N_{o} \cdot\left(\int_{-\infty}^{0} x \cdot e^{-N_{1} x^{2}} d x+\int_{0}^{\infty} x \cdot e^{-N_{1} x^{2}} d x\right)=N_{0} \cdot\left(\left(-\frac{0!}{2 a^{0+1}}\right)+\frac{0!}{2 a^{0+1}}\right)=0$
The most probable value x_{mp} :
$\frac{d(D(x))}{d x}=N_{0} \cdot\left(-2 N_{1}\right) \cdot x \cdot e^{-N_{1} x^{2}}=0$
$\mathrm{x}_{\mathrm{mp}}=0$
The standard deviation σ_{x} :
$\sigma_{x}=\int_{-\infty}^{\infty}(x-\bar{x})^{2} \cdot N_{0} e^{-N_{1} x^{2}} d x=N_{o} \cdot \int_{-\infty}^{\infty} x^{2} \cdot N_{0} e^{-N_{1} x^{2}} d x=\left\{\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}, n=1\right\}=N_{o} \cdot 2 \int_{0}^{\infty} x^{2} \cdot N_{0} e^{-N_{1} x^{2}} d x=N_{0} \cdot 2 \cdot \frac{1}{2^{1+1} N_{1}^{n}} \sqrt{\frac{\pi}{N_{1}}}=\frac{N_{0}}{2 N_{1}^{n}} \sqrt{\frac{\pi}{N_{1}}}$

The expression for finding x exactly at 0 for a Gaussian probability distribution is

$$
D(0)=N_{0} e^{-N_{1} x^{2}}=N_{0} e^{-N_{1} 0^{2}}=N_{0}
$$

The constants N_{o} and N_{1} in the Gaussian distribution are expressed in terms of each other:

$$
\begin{gathered}
A=\int_{-\infty}^{\infty} N_{0} e^{-N_{1} x^{2}} d x=N_{o} \cdot 2 \int_{0}^{\infty} e^{-N_{1} x^{2}} d x=N_{o} \cdot 2 \cdot \frac{1}{2} \sqrt{\frac{\pi}{N_{1}}}=N_{0} \sqrt{\frac{\pi}{N_{1}}}=1 \\
N_{0}=\sqrt{\frac{N_{1}}{\pi}}
\end{gathered}
$$

The expression for finding x between and 0 and $+\infty$ for a Gaussian probability distribution when N_{o} and N_{1} are expressed in terms of each other:

$$
N_{0} \int_{0}^{\infty} e^{-N_{1} x^{2}} d x=N_{o} \cdot \frac{1}{2} \sqrt{\frac{\pi}{N_{1}}}=\sqrt{\frac{N_{1}}{\pi}} \cdot \frac{1}{2} \sqrt{\frac{\pi}{N_{1}}}=\frac{1}{2}
$$

