Chem1403 Worksheet
Concentration Problems Key

1. 5.8900 g of NaCl was added into 100.00 mL volumetric flask. The flask was then filled up with water to the mark. What is the molarity of the solution?

$$
\begin{gathered}
\mathrm{mol} \text { of } \mathrm{NaCl}=\frac{5.8900 \mathrm{~g}}{58.443 \mathrm{~g} / \mathrm{mol}}=.10079 \mathrm{~mol} \\
M=\frac{\text { mol of solute }}{\text { L of solution }}=\frac{.10079 \mathrm{~mol} \mathrm{NaCl}}{.10000 \mathrm{~L}}=1.0079 \mathrm{M}
\end{gathered}
$$

2. Calculate the mass of solid $\mathrm{H}_{3} \mathrm{PO}_{4}$ is needed to prepare a solution of 2.5 M solution in 500.0 mL of water

$$
\begin{gathered}
M=\frac{\text { mol of solute }}{L \text { of solution }} \rightarrow \text { mol of solute }=M(L \text { of solution })=2.5(.5000)=1.25 \mathrm{~mol} \\
\text { mass of } \mathrm{H}_{3} \mathrm{PO}_{4}=1.25(97.995)=122.49 \mathrm{gH}_{3} \mathrm{PO}_{4}
\end{gathered}
$$

3. How much water is needed to prepare a solution of 0.80 M of KOH if 3.8909 g is used?

$$
\begin{gathered}
\text { mol of } \mathrm{KOH}= \\
\begin{aligned}
M=\frac{3.8909 \mathrm{~g}}{56.106 \mathrm{~g} / \mathrm{mol}}=0.06935 \mathrm{~mol} \\
L \text { of solution }
\end{aligned} \\
\rightarrow L \text { of solution }=\frac{\mathrm{mol} \text { of solute }}{M}=\frac{.06935 \mathrm{~mol}}{.80 \mathrm{M}} \\
\\
=.08668 \mathrm{~L} \text { or } 86.68 \mathrm{~mL}
\end{gathered}
$$

4. 20.00 mL of 0.00500 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is transferred to 100.00 mL volumetric flask and diluted to the mark. What is the final concentration of that weak acid solution?

$$
\begin{gathered}
M_{1} V_{1}=M_{2} V_{2} \\
M_{2}=\frac{M_{1} V_{1}}{V_{2}}=\frac{(.00500 \mathrm{M})(20.00 \mathrm{~mL})}{(100.00 \mathrm{~mL})}=.00100 \mathrm{M}
\end{gathered}
$$

5. 5.8900 g of NaCl was added into 250.00 mL of water. What is the molality of the solution?

$$
\mathrm{mol} \text { of } \mathrm{NaCl}=\frac{5.8900 \mathrm{~g}}{58.443 \mathrm{~g} / \mathrm{mol}}=.10079 \mathrm{~mol}
$$

$$
m=\frac{\mathrm{mol} \text { of solute }}{\mathrm{kg} \text { of solvent }}=\frac{.10079 \mathrm{~mol} \mathrm{NaCl}}{.25000 \mathrm{~kg}}=0.40316 \mathrm{~m}
$$

*Notes: as density of water is $1.0 \mathrm{~g} / \mathrm{mL}$. Therefore, 250.00 mL of water $=250.00 \mathrm{~g}$ of water
6. Calculate the molality of the Na^{2+} ion by adding 2.5000 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ into 150.00 mL of water.

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{2+}+\mathrm{SO}_{4}^{2-} \\
\mathrm{mol} \text { of } \mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{2.5000 \mathrm{~g}}{142.042 \mathrm{~g} / \mathrm{mol}}=.017600 \mathrm{~mol} \\
m=\frac{\mathrm{mol} \text { of solute }}{\mathrm{kg} \text { of solvent }}=\frac{.17600 \mathrm{~mol} \mathrm{Na} \mathrm{SO}_{4}}{.15000 \mathrm{~kg}}=1.1733 \mathrm{~m} \text { or } 1.1733 \frac{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~kg}} \\
1.1733 \frac{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~kg}}\left(\frac{2 \mathrm{~mol} \mathrm{Na}^{2+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}\right)=2.3466 \frac{\mathrm{~mol} \mathrm{Na}}{2+} \\
\mathrm{kg} \\
\text { or } 2.3466 \mathrm{~m} \mathrm{Na}
\end{gathered}
$$

7. A solution contained 28.9909 g of water $\left(\mathrm{H}_{2} \mathrm{O}\right), 5.4900 \mathrm{~g}$ of hydrochloric acid (HCl) and 0.4599 g of cisplatin. What is mass percent of cisplatin?

$$
\begin{gathered}
\text { Mass \% of } A=\left(\frac{\operatorname{mass}_{A}}{m_{a s s_{A}}+\operatorname{mass}_{B}+\operatorname{mass}_{C}}\right) \times 100 \\
\text { Mass \% of cisplatin }=\left(\frac{\text { mass }_{\text {cisplatin }}}{\text { mass }_{\text {cisplatin }}+\operatorname{mass}_{H_{2} O}+\text { mass }_{H C l}}\right) \times 100 \\
\text { Mass \% of cisplatin }=\left(\frac{0.4599}{0.4599+28.9909+5.4900}\right) \times 100=1.316 \%
\end{gathered}
$$

8. A solution of ethyl acetate is $\mathbf{7 2 \%}$ water. If the density of pure ethyl acetate is $.902 \mathrm{~g} / \mathrm{mL}$ and the molecular weight is $88.11 \mathrm{~g} / \mathrm{mol}$, calculate the molarity of the solution.

Assume we have 100 mL of solution $=100 \%$ solution

$$
\% \text { water }+\% \text { ethyl acetate }=100 \%
$$

$$
\% \text { ethyl acetate }=100 \%-\% \text { water }=100-72=28 \%
$$

Therefore, volume of ethyl acetate is 28 mL
$28 m L$ ethyl acetate $\left(\frac{.902 \mathrm{~g}}{m \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol}}{88.11 \mathrm{~g}}\right)\left(\frac{1}{100 m L \text { solution }}\right)\left(\frac{1000 \mathrm{~mL}}{1 L}\right)=2.866 \mathrm{M}$
9. A 2.7 M solution is found to be composed of $\mathbf{2 . 3 \%}$ by mass of an unknown organic compound. The density of the solution was experimentally determined to be $1.48 \mathrm{~g} / \mathrm{mL}$. In order for Dr. Belford to identify the compound, he must know the molecular mass. Calculate the molecular mass of the unknown compound.

Assume we have 100 g of solution $=100 \%$ solution
Therefore, we have 2.3 g of unknown organic compound

$$
\frac{2.3 \mathrm{~g} \text { of unknown }}{100 \mathrm{~g} \text { of solution }}\left(\frac{1.48 \mathrm{~g} \text { solution }}{1 \mathrm{~mL} \text { solution }}\right)\left(\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~L} \text { solution }}{2.7 \text { mol unknown }}\right)=12.60 \mathrm{~g} / \mathrm{mol}
$$

10. Calculate the parts per million of 3.00 L solution of $1.79 \times 10^{-3} \mathrm{M} \mathrm{Rb}_{2} \mathrm{SO}_{3}$. The molecular weight of $\mathrm{Rb}_{2} \mathrm{SO}_{3}$ is $250.999 \mathrm{~g} / \mathrm{mol}$

$$
p p m=\frac{g \text { of solute }}{10^{6} g \text { solution }} \text { or } \frac{m g \text { solute }}{L \text { solution }}
$$

$$
\begin{aligned}
& \text { mass of solute } \\
& =\frac{1.79 \times 10^{-3} \mathrm{~mol} \mathrm{Rb}}{2} \mathrm{SO}_{3} \\
& 1 \mathrm{~L} \mathrm{solution} \\
& =1347.86 \mathrm{mg}
\end{aligned}
$$

$$
p p m=\frac{1347.86 \mathrm{mg}}{3.00 \mathrm{~L} \text { solution }}=449.29 \mathrm{ppm}
$$

11. Calculate the parts per billion of 6.20 L of a $2.77 \times 10^{-6} \mathrm{M}$ solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$. The molecular weight of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ is $189.390 \mathrm{~g} / \mathrm{mol}$.

$$
p p b=\frac{g \text { of solute }}{10^{9} g \text { solution }} \text { or } \frac{\mu g \text { solute }}{L \text { solution }}
$$

$$
\begin{aligned}
& \text { mass of solute } \\
& =\frac{2.77 \times 10^{-6} \mathrm{~mol} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~L} \text { solution }}\left(\frac{6.20 \mathrm{~L} \text { solution }}{1}\right)\left(\frac{189.390 \mathrm{~g} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}{\mathrm{~mol}}\right)\left(\frac{10^{6} \mu \mathrm{~g}}{1 \mathrm{~g}}\right) \\
& =3252.58 \mu \mathrm{~g}
\end{aligned}
$$

$$
p p b=\frac{3252.58 \mu \mathrm{~g}}{6.20 \text { L solution }}=524.61 \mathrm{ppb}
$$

