Instructor Resources
S/N Module Exercises

Introduction to Signal-to-Noise Enhancement
Part 1 – Spreadsheet Orientation
1. Students should be encouraged to describe how the appearance of the simulated instrumental response changes as the signal and noise parameters are adjusted. Students should be able to: 

a. Control the magnitude of the background noise. A “noise-free” signal may be obtained by setting the magnitude of the noise to zero.

b. Control the offset of the signal. This is typically useful when the data has no superimposed noise but the baseline is hidden by the x-axis.

c. Control the number of visible peaks – as many as three peaks may be visible at one time. If the magnitude of a specific peak is zero, there is no signal. Relatively small peaks might not be visible in the presence of large peaks.
d. Control the height and width of the signal. The spreadsheet does provide some guidance regarding the available peak positions and widths, but overlapping signals are certainly possible. 

2. Students should provide an appropriate description of the spreadsheet response characteristics. Students may be encouraged to describe how the magnitude of the signal and noise impact the quality of the instrumental response by highlighting appropriate definitions and relationships.
a. The parameter that controls the signal level is the magnitude of the peak intensity (or intensities for overlapping peaks). 

b. The parameter that controls the noise level is the magnitude of the noise. 

c. The character (or quality) of the signal may be described by the signal-to-noise ratio at a designated confidence level. Students may also mention that the peak width (in addition to peak height & noise) affects the character of the instrumental response. 
Part 2 – Evaluating Baseline Noise
1. This question is simply a review on how to properly adjust the noise & offset parameters.

2. This set of questions is a review of how to calculate VRMS, the standard deviation of the noise, from the peak-to-peak magnitude, VN.
a. If the peak-to-peak noise has a magnitude of 1.0 µV, the standard deviation at the 99% confidence level should be 0.19 µV. 

b. Upon increasing the peak-to-peak noise from 0.0 to 1.0 µV, the RMS noise should agree with the calculation in part a. If not, the student should recalculate the standard deviation until an agreement is reached.
c. If the confidence level is decreased to 95%, the standard deviation of the peak-to-peak noise should increase to 0.26 µV. Students should think about how the number of standard deviation multiples (i.e. the z-statistic), and therefore the width of the Gaussian noise distribution, change as a function of the confidence level.
Part 3 – Evaluating Signal-to-Noise Ratios
1. This part of the exercise focuses on signal quality. There is a ten-fold difference between the strongest and weakest signals, which should theoretically result in a ten-fold S/N difference. Students should be able to develop qualitative and quantitative insight into figures of merit (e.g. S/N and %RSD) as a function of signal quality. 

a. All of the peaks should have S/N > 3.

b. The approach to this exercise is to record the peak+noise data for multiple sets of data and calculate the average and standard deviation for each set of signals. Each recalculation (pressing F9) represents a set of data For example, if three recalculations are performed, a representative result would be as follows:
i. Peak #1: 9.61, 9.63, 10.08 µV; 
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 = 9.77 µV, s = 0.26 µV
ii. Peak #2: 5.48, 5.00, 4.63 µV; 
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 = 5.04 µV, s = 0.43 µV
iii. Peak #3: 1.07, 0.96, 0.60 µV; 
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 = 0.88 µV, s = 0.25 µV
Calculating the %RSD for each signal 
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i. Peak #1: 100*(0.26 µV/9.77 µV) = 2.7% RSD
ii. Peak #2: 100*(0.43 µV/5.04 µV) = 8.5% RSD
iii. Peak #3: 100*(0.25 µV/0.88 µV) = 28% RSD
Students should comment on the relationship between the uncertainty of a signals’ magnitude and the S/N.
2. This exercise repeats the S/N & %RSD evaluation from question 1 with a greater magnitude of noise. Students should be able to comment on the signal quality as a function of the RMS noise.

3. Students should be able to recognize how an improvement in the signal-to-noise ratio impacts the analyst’s confidence in a particular measurement.

Bode Plot Exercise

1. The cutoff frequency for the RC filter pictured in this exercise should be reported as 340 Hz.

2. Using the RC filter pictured in this exercise, a ten-fold enhancement of the S/N ratio with minimal signal distortion can only be achieved with the first pair of frequencies (1 Hz signal, 5000 Hz noise). Students should be able to recognize if they have a low-pass or high-pass filter and calculate whether the signal or noise at a particular frequency will be significantly attenuated by a given RC filter. The appropriate relationship between Vout and Vin for each type of RC filter is summarized in the analog filtering section of the module.
Analog Filtering Exercise #1
1. Students should answer the first question by explaining how the “resistance” of the capacitor changes as a function of frequency and how that affects the total resistance of the frequency dependent voltage divider circuit.
2. For a 1 Hz waveform, Vout = 1.000V; for a 100 Hz waveform, Vout = 0.998V; for a 5000 Hz waveform, Vout = 0.303 V.

3. The lowest frequency is least attenuated by the RC filter.

4. Prior to filtering, the signal-to-noise ratio is 5.16.

5. After processing the signal with the RC filter, the signal-to-noise ratio is 17.0.

Analog Filtering Exercise #2
1. The proposed RC filter is shown below:
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A suggested approach to this design problem is as follows:
a. Since the RC filter is expected to attenuate the noise by a factor of three, have the students calculate the proper resistance so that (Vout/Vin) = 0.33 (i.e. a three-fold increase in S/N)
b. Determine the frequency of the signal and plug it into the filter response equation to ensure that the signal attenuation is less than <0.5% (i.e. Vout/Vin. The filtered HPLC response should be 99.9% of the unfiltered response, although the end result is slightly dependent on the estimated signal frequency.
Ensemble Averaging Exercise

1. The S/N improves with the square root of the number of averaged datasets

2. Students should recognize that if the magnitude of an analyte response is similar to the magnitude of the system noise (e.g. the S/N < 3), the analyte concentration is below the detection limit of the measurement system and no definitive judgement can be made about the presence and/or concentration of the analyte of interest. If the analyte response is “constant” and the noise is “random”, an ensemble average approach may be used to improve the S/N above the detection limit of the analytical system.
Boxcar Averaging Exercises
1. Students should recognize that the most important peak parameter to consider is peak width when using a boxcar averaging technique to improve S/N. Treating a data set with the boxcar averaging technique is analogous to applying a low-pass filter. Increasing the boxcar width would be analogous to decreasing the filter bandwidth. Therefore, if the width of the boxcar is comparable to or larger than the width of the peak, severe peak distortion (via attenuation) results.

2. Students should recognize that the boxcar averaging technique is most useful when the density of data points is large, because boxcar averaging will reduce the resolution of the data set by a factor of N, the number of points in the boxcar. In this case, although signals with a signal-to-noise ratio significantly above the detection limit appear cleaner after boxcar averaging, there appears to have only a modest improvement in the visibility of a signal at or below detection limits because of the resulting reduction in data set resolution.

Moving Average Exercise
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1. Students should recognize that moving average filters distort the analytical signal by decreasing the magnitude and increasing the peak width. Students should also recognize that for a given filter width, peak distortion is more pronounced for narrower signals (i.e. higher signal frequencies). Peak distortion is also more pronounced for unweighted filters than weighted (e.g. Savitzky-Golay) filters.
2. Students should recognize that the Savitzky-Golay algorithm distorts the analytical signal to a lesser extent than the unweighted filter.
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1. For a given filter width, the unweighted moving average filter has a much greater effect on distorting the analytical signal than the Savitzky-Golay algorithm.

2. Since this exercise uses noise-free simulated data, it is easy to have students plot the signal magnitude as a function of filter width (and type). Students can estimate the distortion of the analytical signal as an absolute measurement (PeakHeightunfiltered – PeakHeightfiltered) or relative measurement (PeakHeightunfiltered – PeakHeightfiltered)/(½(PeakHeightunfiltered + PeakHeightfiltered)). The resolution of the data set is 0.01 min per point, so students can then comment on the amount of signal distortion as a function of (filter width/peak width) so that a comparison can be made with respect to the analytical peak parameters.

3. Students should recognize that any signal processing will distort an analytical response. Students should become accustomed to the idea that there is an acceptable amount of signal distortion for a given S/N enhancement, and that the analyst should define the level of distortion that is acceptable.
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1. Students should use this comparison exercise to visually evaluate the effect of weighted and unweighted filters on instrumental responses with excellent and poor S/N. Typical observations will be that the unweighted moving average filter distorts an analytical response to a significantly greater degree than a Savitzky-Golay filter of equal length. However, neither filter appears to be especially suited for improving the visual quality of low S/N analytical responses. In fact, students may find that the widest peak (Peak #3) has a more appropriate “peak-shaped” appearance after smoothing with the unweighted filter.

2. Out of the four S/N enhancement approaches covered in this module, ensemble averaging would appear to be the best suited for improving weak signals (i.e. signals at or below the detection limit).
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